1 / 16

Modeling with Constraint Logic Programming

Modeling with Constraint Logic Programming. Ulf Nilsson Dept of Computer and Information Science Linköping University. R. V. r(R). c(V). C1. C2. ser(C1, C2). C1. par(C1, C2). C2. Representing DC Circuits. 9V. 10. ser(c(9), par(r(10), r(5))). 5. circuit(c(N)) :- {N>=0}.

hop
Download Presentation

Modeling with Constraint Logic Programming

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Modeling with Constraint Logic Programming Ulf Nilsson Dept of Computer and Information Science Linköping University

  2. R V r(R) c(V) C1 C2 ser(C1, C2) C1 par(C1, C2) C2 Representing DC Circuits

  3. 9V 10 ser(c(9), par(r(10), r(5))) 5 circuit(c(N)) :- {N>=0}. circuit(r(N)) :- {N>=0}. circuit(ser(C1, C2)) :- circuit(C1), circuit(C2). circuit(par(C1, C2)) :- circuit(C1), circuit(C2). Example

  4. % res(C, R) % Circuit C has resistance R res(c(V), 0) :- {V>=0}. res(r(R), R) :- {R>=0}. res(ser(C1, C2), R1+R2) :- res(C1, R1), res(C2, R2). res(par(C1, C2), R1*R2/(R1+R2)) :- res(C1, R1), res(C2, R2). Resistance

  5. Derivation < res(ser(r(X), r(X)), 10), | true > < r(X)=C1, r(X)=C2, 10=R1+R2, res(C1,R1), res(C2,R2) | true > < res(r(X),R1), res(r(X),R2) | 10=R1+R2 > < r(X)=r(R), R1=R,R>=0, res(r(X),R2) | 10=R1+R2 > < res(r(X),R2) | 10=X+R2 , X>=0 > < true | 10=X+X, X>=0 > X=5

  6. Typical CLP program solve(Term) :- setup_constraints(Term), redundant_constraints(Term), solve_constraints.

  7. Language of CLP(B) • Boolean constants: 0 and 1 • Parameters: X, Y, ... • Negation: ~ • Binary connectives: *, +, #, =<, =:=, ... • Cardinality: card(Is, Es)

  8. CLP built-ins • sat(BOOLEXPR)The boolean expression is added to the constraint store if the store is still satisfiable • taut(BOOLEXPR, TRUTHVAL)Succeeds if TRUTHVAL=1 and BOOLEXPR is entailed by the constraint store or if TRUTHVAL=0 and ~BOOLEXPR is entailed by the constraint store. • labeling(VARLIST)Enumerates all bindings of the variables in VARLIST that satisfy the constraint store.

  9. Examples ?- sat(A+B), sat(~A). A=0, B=1 ?- sat(A*B), sat(~A). no ?- sat(A+B), sat(~A), taut(B, 1). A=0, B=1 ?- sat(A=:=B), labeling([A,B]). A=0, B=0 A=1, B=1

  10. Examples: Cardinality ?- sat(A+B), sat(card ([1], [A, B])). sat(A=\= B) ?- sat(A=<B), sat(card([0-1], [A, B])). A=0

  11. Source Source Gate Gate Drain Drain nswitch(S, D, G) :- sat(D*G =:= G*S). pswitch(S, D, G) :- sat(D* ~G =:= ~G*S). Circuit Verfication n-switch MOS p-switch MOS

  12. Example ?- nswitch(S, D, G), labeling([S, D, G]). D = 0, G = 0, S = 0 D = 1, G = 0, S = 0 D = 0, G = 1, S = 0 D = 0, G = 0, S = 1 D = 1, G = 0, S = 1 D = 1, G = 1, S = 1

  13. z xor(X, Y, Z) :- pswitch(Tmp,1,X), nswitch(0, Tmp, X), pswitch(Z, X, Y), nswitch(Z, Tmp, Y), nswitch(Z, Y, Tmp), pswitch(Z, Y, X). 0 tmp y x 1 1 1 Circuit verification (cont’d) 0

  14. Is It Really an XOR? ?- xor(X, Y, Z). sat(X=:=Y#Z) ?- xor(X,Y,Z), labeling([X, Y, Z]). X = 0, Y = 0, Z = 0 X = 1, Y = 0, Z = 1 X = 1, Y = 1, Z = 0 X = 0, Y = 1, Z = 1

  15. Testing vs Verification Can we verify the circuit without testing it? Yes! Schematically: ?- sat(System), taut(Property, 1). ?- xor(X, Y, Z), taut(Z=:=X#Y, 1). sat(X=:=Y#Z)

  16. Property is entailed by System iff (System * ~Property) is unsatisfiable Very Useful Theorem ?- xor(X, Y, Z), sat(~(Z=:=X#Y)). no

More Related