200 likes | 311 Views
Constraining the Flux of Low-Energy Cosmic Rays Accelerated by the Supernova Remnant IC 443. N. Indriolo 1 , G. A. Blake 2 , M. Goto 3 , T. Usuda 4 , T. R. Geballe 5 , T. Oka 6 , & B. J. McCall 1. 1 – University of Illinois at Urbana-Champaign 2 – California Institute of Technology
E N D
Constraining the Flux of Low-Energy Cosmic Rays Accelerated by the Supernova Remnant IC 443 N. Indriolo1, G. A. Blake2, M. Goto3, T. Usuda4, T. R. Geballe5, T. Oka6, & B. J. McCall1 1 – University of Illinois at Urbana-Champaign 2 – California Institute of Technology 3 – Max Planck Institute for Astronomy 4 – Subaru Telescope 5 – Gemini Observatory 6 – University of Chicago Image credit: Gerhard Bachmayer
Why look near supernova remnants? • Observational evidence suggests Galactic cosmic rays are accelerated primarily by supernova remnants (SNRs) • As cosmic rays propagate, they interact with the ISM • excitation & ionization of atoms & molecules • excitation of nuclear states • spallation of ambient nuclei • production of pions (0, +, -)
IC 443 Basics • Located at (l,b)=(189°,+3°) • 1.5 kpc away in Gem OB1 association • Estimated to be about 30,000 years old • Known to be interacting with surrounding molecular material • Lies behind a quiescent molecular cloud
IC 443 tour: Radio to Gamma-Rays Troja et al. 2006, ApJ, 649, 258
IC 443 tour: Radio to Gamma-Rays 12CO antenna temperature map: Dickman et al. 1992, ApJ, 400, 203
IC 443 tour: Radio to Gamma-Rays 2MASS JHK bands: Rho et al. 2001, ApJ, 547, 885
IC 443 tour: Radio to Gamma-Rays XMM 0.3-0.5 keV X-ray map: Troja et al. 2006, ApJ, 649, 258
IC 443 tour: Radio to Gamma-Rays VERITAS gamma-ray map: Acciari et al. 2009, ApJ, 698, L133
H3+ Chemistry • Formation • CR + H2 H2+ + e- + CR’ • H2+ + H2 H3+ + H • Destruction • H3+ + e- H2 + H or H + H + H (diffuse cloud) • H3+ + CO H2 + HCO+ (dense clouds) • Steady state
N(H2) from N(CH) Sheffer et al. 2008, ApJ, 687, 1075 Calculating the Ionization Rate xe from C+; Cardelli et al. 1996, ApJ, 467, 334 nH from C2 and CN; Hirschauer et al. 2009, ApJ, 696, 1533
Observations • Transitions • H3+ν2 0 • R(1,1)u, R(1,0), R(1,1)l, Q(1,0), Q(1,1), R(3,3)l • Telescopes • Keck: NIRSPEC • Subaru: IRCS • 6 target sight lines with CH & CN
HD 43703 ALS 8828 HD 254755 HD 43582 HD 254577 HD 43907 Observations
HD 43703 ALS 8828 HD 254755 HD 43582 HD 254577 HD 43907
Case 1: Low electron density • By taking an average value from C+, have we overestimated the electron density? • xe decreases from ~10-4 in diffuse clouds to ~10-8 in dense clouds • C2 rotation-excitation and CN restricted chemical analyses indicate densities of 200-400 cm-3 (Hirschauer et al. 2009) • Estimated values of x(CO) are ~10-6, much lower than 3×10-4 solar system abundance of carbon
Case 2: High Ionization Rate • How can we explain the large difference between detections and upper limits? • Cosmic-ray spectrum changes as particles propagate • Perhaps ALS 8828 & HD 254577 sight lines probe clouds closer to SNR Spitzer & Tomasko 1968, ApJ, 152, 971 Torres et al. 2008, MNRAS, 387, L59
7.5 pc <5.710-16 s-1 1610-16 s-1 <3.510-16 s-1 <9.010-16 s-1 2610-16 s-1 <4010-16 s-1
Conclusions • We’ve detected large columns of H3+ in 2 sight lines toward IC 443 • This is either the result of a high cosmic-ray ionization rate or low electron density • Unclear whether or not low-energy cosmic rays accelerated by SNRs can account for the flux necessary in the Galactic ISM to produce the inferred ionization rate
Future Work • Use COS on Hubble to observe C II, C I, and CO absorption toward IC 443 • Search for H3+ toward other supernova remnants which are interacting with molecular clouds; e.g. W 44, W 28, W 51