60 likes | 353 Views
Conservation of Momentum Momentum before a collision must Equal Momentum after a collision. Before = After m 1 v i + m 2 v i = m 1 v f + m 2 v f. Remember Momentum (p) is a vector so “+” & “-” for direction need to be used before & after the collision
E N D
Conservation of Momentum • Momentum before a collision • must Equal • Momentum after a collision. Before = After m1vi + m2vi = m1vf + m2vf
Remember Momentum (p) is a vector so “+” & “-” for direction need to be used before & after the collision (A negative “-” means opposite direction) Sample 6D pg 218 *Elastic Collision* Figure 6-8 Elastic collision m1vf + m2vf (After) m1vi + m2vi (Before) *m2vf decreases while m1vf increases
Inelastic Collisions m1vi + m2vi = (m1 + m2) Vf Sample Problem 6E pg 223
Kinetic Energy is not conserved in inelastic collisions (1/2 mv2) Why? Sample 6F, pg 225 * KE Calculations K.E. is constant in an Elastic Collision. [Figure 6-12] pg 227 Sample 6G pg 228 * Notice KE Calculations Table 6-2 pg 230
HMWK #1Test #7 Chp. 6 D-G BK Chp. 6 D-F Pg. 219 6D 1,3 Pg. 224 6E 3,5 Pg. 226 6F 2,3 #2 a.6.2 m/s S b. 3 J
HMWK #2Test #7 Chp. 6 D-G WKBK: 6-D: 3. Vi= .4 m/s forward 4. Vi= .54 m/s backward 6-E: 1. m2= 270 kg 2. m2= 4.97 kg 8. Vf= .69 m/s Up 9. Vf = .456 m/s left 6F: 2. m2= 4.4 x 102kg ΔKE= -3280 J 3. Vf= 2 m/s right ΔKE = -5450 J 6G: 2. Vi= 5m/s right KE = KE 932 J = 933 J 3. Vi= 2 m/s left 29m/s2 = 29m/s2