1 / 30

MCB 135K Discussion

MCB 135K Discussion. April 20, 2005. Topics . Adaptation to Stress Hypothalamo-Pituitary-Thyroid Axis Carbohydrate Metabolism, Diabetes, and Aging. Beneficial effects of Hormesis may be due to:. DNA repair Immune competence Neurologic acuity Neuromuscular activity

iago
Download Presentation

MCB 135K Discussion

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MCB 135K Discussion April 20, 2005

  2. Topics • Adaptation to Stress • Hypothalamo-Pituitary-Thyroid Axis • Carbohydrate Metabolism, Diabetes, and Aging

  3. Beneficial effects of Hormesis may be due to: DNA repair Immune competence Neurologic acuity Neuromuscular activity Better memory Resistance/ adaptation to stress

  4. Several lines of investigations have shown that manipulation of the genome will result in changes of the phenome. These changes involve alteration of the endocrine signaling with a shift From To • High energy consumption • Active growth & development • Active reproductive function • Reduce energy • consumption • Arrest of growth, • development, • reproductive function • High resistance to stress

  5. Shift in HPA secretory priorities during stress

  6. Suppressing signaling from hormones such as: insulin, growth hormone, insulin-like growth hormone and others by constructing mutants with lack of the hormone or the hormone receptors can prolong the lifespan as much as six times the lifespan in C. Elegans,delaying the aging process

  7. “I cannot, and should not, be cured of my stress but merely taught to enjoy it” Hans Selye, l950 Responses to stress are indispensable to our survival as they allow us to maintain the internal equilibrium necessary for optimal function Responses to stress are multifactorial (depend on interactions of several systems)

  8. If response to stress is severe & prolonged it may represent a major risk for the “diseases of adaptation” (e.g. cardiovascular, cognitive, emotional, metabolic diseases) & shorten the lifespan • If the response to stress is moderate & of short duration, it may stimulate hormesis: • the functions of alertness, vigilance & motivation • a greater availability & utilization of metabolic energy • favor DNA repair • improve protein folding (chaperone stimulation) • prevent/decrease free radical accumulation • promote survival and may delay aging

  9. ON FLIES, WORMS, RODENTS: LONGEVITY is associated With stimulation (up-regulation) Of genes involved in response to stress including those of HSP HSPs act as chaperones and promote greater tolerance/resistance to stress (thermic and others) Hence, increased longevity and hormesis may depend on Increased HSPs and their actions as chaperones

  10. Table 13.3Major Actions of Thyroid Hormones • Calorigenesis • Metabolism • Brain maturation • Behavior • Growth & development

  11. 3, 5, 3’, 5’ Tetraiodothyronine (thyroxine, T4) 3, 5, 3’ Triiodothyroine (T3)

  12. Table 13-2: Some MORPHOLOGIC Changes • in the Thyroid Gland with Aging FOLLICLES: - Are distended - Change in color - Epithelium flattened w/ reduced secretion Increased connective tissue; Fibrosis Atherosclerotic changes Fewer mitoses

  13. in antithyroid antibodies, present even in the absence of manifestations of hypothyroidism TSH levels in 10% of the elderly, associated circulating T3 levels but generally within the normal (lower) range peripheral conversion of T4 to T3 • Table 13-2 (con’t.): Some SECRETORY Changes • in the Thyroid Gland with Aging Simultaneously decreased secretion and metabolic clearance of T4 with resulting essentially normal levels Failure of up-regulation of T3 nuclear receptors

  14. Table 13-1: Some Critical Aspects of Thyroid Hormone Regulation Major source of circulating T3 from peripheral deiodination of T4 (NOT from thyroid gland secretion) The negative feedback at the pituitary anterior lobe is mainly through T4 (taken from circulation & converted into T3) The peripheral deiodination of T4 depends on the physiological state of the organism. It allows an autonomy of response of the tissues to the hormones. Deiodination can convert T4 (a less biologically active hormone) to T3 (a more active hormone). This conversion depends on the activity of the various deiodinating enzymes.

  15. Table 13-6 Autoimmune Diseases of the Thyroid Gland

  16. Table 13-7 Common Signs and Symptoms of Hyperthyroidism in the Elderly Cardiovascular Congestive heart failure Atrial fibrillation Angina (coronary heat disease) Pulmonary edema CNS Tremor Nervousness Weakness Weight loss and anorexia Exothalmos (protrusion of eyeball) THYROID Goiter? Thyroid nodules? **Also, apathetic hyperthyroidism (see page 244)**

  17. Table 13-8 Frequently Missed Common Signs and Symptoms of Hypothyroidism in Elderly Patients Cardiovascular Dyspnea (shortness of breath) Chest pain Enlarged heart Bradycardia (slow heart beat) MISC. Anorexia and constipation Muscular weakness Mild anemia Depression Cold intolerance Joint pain

  18. With Age: • Incidence of Diabetes Mellitus Type 2 (late onset diabetes, non-insulin dependent diabetes) increases considerably • Diabetes Mellitus Type 2 is the most common form of diabetes • Onset occurs years before symptoms are appreciated • therefore, it is important to screen high risk individuals

  19. Morphologic Changes • A certain degree of atrophy • An increased incidence of tumors • Presence of amyloid material & lipofuscin granules (signs of abnormal cellular metabolism)

  20. Table 14-1 Major pancreatic hormones PancreasHormoneAlternate source F, D or PP Cells Pancreatic GI mucosa Polypepetide B-Cells Pre-proinsulin Proinsulin Insulin (+ connecting C-peptide) A-Cells Proglucagon GI mucosa Glucagon(+ glicentin) D-Cells Somatostatin GI mucosa CNS F, D or PP Cells Pancreatic GI mucosa Polypepetide

  21. Table 14-2 Major actions of insulin Glucose transport into muscle & adipose cells overall body growth (general effect) • intracellular metabolic use of glucose blood glucose intracellular transport of amino acids & lipids & protein and triglyceride synthesis glycogen synthesis in liver and muscle cells gluconeogenesis (in liver)

  22. When blood glucose is high (hyperglycemia), glucose balance is maintained by: Glucose cellular uptake (in muscle) Insulin secretion Endogenous production of glucose Storage of glucose (in liver as glycogen), fat & amino Acids arriving in the blood form GI tract Utilization of glucose (muscle & adipose cells)

  23. Table 14-7 Characteristics of Diabetes Mellitus glucose uptake Hyperglycemia glycogenesis hepatogluconeogenesis Glycosuria Polyuria Polydipsia Polyphagia protein catabolism plasma amino acid gluconeogenesis Weight loss, growth inhibition Negative nitrogen balance lipolysys free fatty acids Ketosis Acidosis Vascular changes Microangiopathies

  24. Table 14-8 • Diabetes and Accelerated Aging • DIABETESAGING • Microangiopathy --- • Cataracts Cataracts • Neuropathy Neuropathy • Accelerated Atherosclerosis Atherosclerosis • Early decreased fibroblast Decreased fibroblast • proliferation proliferation • Autoimmune involvement Autoimmune involvement • Skin changes Skin changes

More Related