1 / 33

Top pair resonance searches with the ATLAS detector

Top pair resonance searches with the ATLAS detector. 钟家杭 University of Oxford Jiahang.Zhong@cern.ch Frontier Physics Working Month. Outline. Background information Top reconstruction Top pair resonance searches Boosted tops. Top quark. Spin=1/2, charge=2/3 The heaviest known quark

ida
Download Presentation

Top pair resonance searches with the ATLAS detector

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Top pair resonance searcheswith the ATLAS detector 钟家杭 University of Oxford Jiahang.Zhong@cern.ch Frontier Physics Working Month

  2. Outline • Background information • Top reconstruction • Top pair resonance searches • Boosted tops jiahang.zhong@cern.ch

  3. Top quark • Spin=1/2, charge=2/3 • The heaviest known quark • m(t)=173.2±0.9 GeV (Tevatron) • Lifetime ~ 5x10-25 s • Decay before hadronization • Almost exclusively via t -> W + b jiahang.zhong@cern.ch

  4. The energy frontier at TeV jiahang.zhong@cern.ch

  5. Beyond the Standard Model • Two benchmark BSM models used in experiments • Z’ in a leptophobictopcolor modelProxy to narrow resonance: Γ/m=1.2% • Kaluza-Klein gluon (KKG) in Randall-Sundrum extra dimension modelsProxy to broad resonance: Γ/m=15.3% KKG branching ratioPhys. Rev. D 77 (2008) 015003 • Generic search, applicable to other BSM models • Spin-0 Lee-Wick Higgs • Spin-2 KK graviton • … jiahang.zhong@cern.ch

  6. The ATLAS detector jiahang.zhong@cern.ch

  7. Leptons in ATLAS • Only prompt leptons are considered signal • Electron: Energy cluster of high EM fraction, matching to a track • Muons: Combined tracking in both Inner Tracker and Muon Chambers • Fixed-cone isolation to suppress QCD contribution • Mostly real leptons from heavy-flavor quark • Both calo-based and track-based • Hadronic tau channel not included jiahang.zhong@cern.ch

  8. Jets in ATLAS • Sequential clustering algorithms : Kt, C/A, anti-Kt • AntiKtas the mainstream jet algorithm • R=0.4 as the standard jet • R=1.0 known as the fat jet (boosted hadronic top jet) • C/A algorithm with R=1.5 used for HEPTopTagger • B-tagging • For antiKt4 jets • Using tracks associated with the jet • Secondary vertices • Impact parameter • Multivariate algorithms, 70% efficiency jiahang.zhong@cern.ch

  9. Leptonic top reconstruction • t -> W + b -> l+v+b • One Lepton • High missing transverse energy (MET) • High transverse mass MT between lepton and MET (due to W mass) • One b-tagged antiKt4 jet. • Neutrino reconstruction • Assuming MET fully from neutrino, solve pz(v) using W-mass • Under-constrained in di-lepton channel jiahang.zhong@cern.ch

  10. Hadronic top reconstruction • t -> W + b -> q+q+b • Resolved: • 3 antiKt4 jets • 2 antiKt4 jets, if one has high mass. • Boosted: • One energetic antiKt10 jet with substructure cuts • One energetic C/A1.5 jetusing HEPTopTagger • Discrimination against QCD Boost jiahang.zhong@cern.ch

  11. Hadronic top reconstruction • Jet substructure • Jet mass> 100 GeV • First splitting scale >40 GeV • Re-clustering jet constitutes with Kt algorithm. The splitting scale of the last step.=min(pTi, PTj) x ΔRij mt/2 mt jiahang.zhong@cern.ch

  12. Top pair resonance search • Select ttbar-like events • Di-lepton • 1 lepton + 4(3) jets (resolved) • 1 lepton + 1 jet + 1 fat jet (boosted) • Fully hadronic (HEPTopTagger) • Reconstruct or equivalent • Look for peaks in spectrum 2 fb-1, EPJC72 (2012) 2083 2 fb-1, arXiv:1207.2409 5 fb-1, ATLAS-CONF-2012-102 jiahang.zhong@cern.ch

  13. Single Lepton Boosted ttbar • Single lepton trigger • Exactly one offline lepton • Electron pT > 25 GeV • MuonpT > 20 GeV • ETmiss>35GeV, MT>25GeV • Solve neutrino pz with W mass constraint • Closest antiKt4 jet as from the leptonic top • pT > 30 GeV • 0.4 < ΔR(lepton, jet) <1.5 • One antiKt10 fat jet • pT > 250 GeV • m > 100 GeV • > 40 GeV • dR(akt4, akt10)>1.5 Signal selection efficiency jiahang.zhong@cern.ch

  14. Single Lepton Boosted ttbar M=2.5 TeV jiahang.zhong@cern.ch

  15. Single Lepton Boosted ttbar • tt= l + v + akt4 + akt10 (4-vector sum) Leptonic top mass(l + v + akt4) Hadronic top mass(fat jet) jiahang.zhong@cern.ch

  16. Single Lepton Boosted ttbar • W+jets background • Data-driven normalization • Multijets • Fully data-driven Can be further improved by b-tagging jiahang.zhong@cern.ch

  17. Single Lepton Boosted ttbar jiahang.zhong@cern.ch

  18. Single Lepton Boosted ttbar • Search for local data excess with BumpHunter • Set 95% CL upper limits on xsec Replace the theoretical line with your favorite model jiahang.zhong@cern.ch

  19. Top pair resonance search More results are coming… jiahang.zhong@cern.ch

  20. Boosted Top • New challenge: TeV frontier • Top decay products are more collimatedΔR ~ m/P jiahang.zhong@cern.ch

  21. Boosted Top: Leptonic • Lepton collinear with the b-quark • Signal acceptance suffers from the fixed-cone isolation cuts Signal selection efficiency jiahang.zhong@cern.ch

  22. Boosted Top: Leptonic JHEP 1103:059 (2011) • Mini-isolation • Variable-cone sizeΔR=KT/pT • Parameter KT, e.g. 15 GeV • Lepton pT (easier than top pT) • Sum up tracks pt within the cone • Sufficient angular resolution Fixed-cone isolation b-jet lepton Isolation cut Boost, dR=mtop/Etop Mini-isolation jiahang.zhong@cern.ch

  23. Boosted Top: Hadronic • Three jets tend to overlap. • Use single jet with large radius • Need rejection against QCD => Substructure variable • Need to get rid of soft component from underlying event and pileup=> Jet Grooming • Not limited to top decay Boost jiahang.zhong@cern.ch

  24. Boosted Top: Jet grooming • Algorithms to reduce soft components from UE and PU • Jet kinematics more close to the constituents of hard scattering • Better resolution/discrimination of the substructure variables • Mass drop/filtering • Trimming • Pruning jiahang.zhong@cern.ch

  25. Boosted Top: Jet grooming Mass drop/filtering • Works on C/A jet • More optimized for two-body hadronic decay • W/Z -> qq, H -> bb Phys.Rev.Lett.100:242001 (2008)(J. Butterworth, A. Davidson, M. Rubin, G. Salam) Mass drop Filtering jiahang.zhong@cern.ch

  26. Boosted Top: Jet grooming JHEP 1002:084 (2010) (D. Krohn, J. Thaler, L. Wang) Trimming • Use jet constituents to build Ktsubjets (e.g. R=0.2) • Remove soft subjets • Applicable to any jet, any physics scenario jiahang.zhong@cern.ch

  27. Boosted Top: Jet grooming arXiv:0912.0033 (2009)(S. Ellis, C. Vermilion, J. Walsh) Pruning • Recluster jet constituents with C/A or Kt algorithm (no need of subjets) • Veto wide angle and soft constituents during jet formation jiahang.zhong@cern.ch

  28. Boosted Top: Jet grooming • Reduce unnecessary catchment area antiKt R=1.0 (ungroomed) antiKt R=1.0 (trimmed) jiahang.zhong@cern.ch

  29. Boosted Top: Substructure • Jet mass are more discriminating after trimming jiahang.zhong@cern.ch

  30. Boosted Top: Substructure • Splitting scale • Re-clustering jet constitutes with Kt algorithm. The splitting scale of the last step.=min(pTi, PTj) x ΔRij jiahang.zhong@cern.ch

  31. Boosted Top: Substructure • N-subjettiness (τN) • Re-clustering with Kt algorithm until exactly N subjets are formed • Smaller τN+1/τN => Structure described better with additional sujet jiahang.zhong@cern.ch

  32. Boosted Top: HEPTopTagger • A multi-step algorithm starting from a large-R C/A jet • Grooming: filter out soft component • Form up subjets • Impose Top and W mass constraints JHEP 1010:078 (2010)ATLAS-CONF-2012-065 jiahang.zhong@cern.ch

  33. Summary • ttbar resonance are searched in all channels at ATLAS • Unfortunately, we don’t have the luck yet… • Systematics still have large impact on the sensitivity • Uncertainty of performance at high pt • Understanding realistic performance of new techniques • Rooms to improve… • New techniques for new challenges • Boosted top/object • Increased luminosity jiahang.zhong@cern.ch

More Related