1 / 44

Understanding Matroid Theory: Bounds, Applications, and Complexity

Matroid theory explores the properties and applications of matroids, abstract mathematical structures that generalize concepts like spanning trees in graph theory. Discover the exchange property, network coding, and algorithms related to matroids. Dive into matroid intersection, explore computational lower bounds, and learn about communication complexity in rank computation. This comprehensive guide delves into the complexities and challenges posed by matroids, offering insights into optimization and problem-solving techniques.

idag
Download Presentation

Understanding Matroid Theory: Bounds, Applications, and Complexity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Query Lower Boundsfor Matroidsvia Group Representations Nick Harvey

  2. Matroids • Definition A matroid is a pair (S,B ) where B ⊂2S s.t. Example: B = { spanning trees of graph G } • Sets in B are called bases • Rank of matroid is |A| for any A∈B Exchange Property Let A and B∈B a∈A\B, b∈B\A s.t. B+a-b∈B

  3. b1 b2 t s b1⊕b2 b1⊕b2 b1⊕b2 Matroids • Definition A matroid is a pair (S,B ) where B ⊂2S s.t. Example: B = { spanning trees of graph G } • Applications • Generalize Graph Problems • Approximation Algorithms • Network Coding Exchange Property Let A and B∈B a∈A\B, b∈B\A s.t. B+a-b∈B

  4. Multicast Network Coding Source b a • Goal: Multicast sourcesinks at maximum rate • Algorithm: Can construct optimal solution in PFlow: [Jaggi et al. ’05],Matroids: [H., Karger, Murota ’05] a b a+b a b a+b a+b Sinks

  5. Reversibility of Network Codes sb sa Sources a b G a b a+b a+b a+b ta Sinks tb

  6. Reversibility of Network Codes tb ta Sinks a+b a+b Grev a b a+b b a sa Sources sb • Flow: G feasible  Grev feasible • Coding:  feasible G s.t. Grevnot feasible[Dougherty, Zeger ’06]

  7. Reversibility of Network Codes [Dougherty, Zeger ’06] Constructed from Fano andnon-Fano matroids

  8. Discrete Optimization Problems • Matroid IntersectionGiven matroids M1=(S,B 1) and M2=(S,B2),is B 1⋂B 2=∅? NetworkFlow SubmodularFlow MinimumSpanningTree SubmodularFunctionMinimization MatroidIntersection MatroidIntersection BipartiteMatching Spanning TreePacking MatroidGreedyAlgorithm Non-Bip.Matching MatroidMatching Min-costArboresence

  9. Matroid Intersection Algorithms Unweighted n = # elements r = rank Linear Matroids Weighted W = max weight Linear Matroids

  10. Are these algorithms optimal? Unweighted n = # elements r = rank Linear Matroids Weighted W = max weight Linear Matroids

  11. Computational Lower Bounds • Strong lower bounds in unrestricted computational models are beyond our reach • 5n - o(n) is best-known lower bound on circuit sizefor an explicit boolean function. [Iwama et al. ’05] • We believe 3SAT requires 2(n) time, butbest-known result is (n). • A super-linear lower bound for anynatural problem in P is hopeless. Data Algorithm

  12. B Data Algorithm In Queries Out Black Box Query Lower Bounds • Strong lower bounds can be proven inconcrete computational models • Sorting in comparison model • Monotone graph properties[Rivest-Vuillemin ’76] • Volume of convex body • Deterministic[Elekes ’86] • Randomized[Rademacher-Vempala ’06] • Our work • Matroid intersection,Submodular Function Minimization

  13. Query Model for Matroids(Independence Oracle) • Example: if B = { spanning trees of graph G },then query asks if T is an acyclic subgraph of G T⊆S Algorithm In Matroid(S,B) “Yes” if B∈Bs.t. T⊆B “No” otherwise Out

  14. Matroid Intersection Complexity O(nr2) queries[Lawler ’75] Algorithms Are (nr2) queries necessary and sufficientto solve matroid intersection? D. J. A. Welsh, “Matroid Theory”, 1976.

  15. Matroid Intersection Complexity O(nr2) queries[Lawler ’75] O(nr1.5) queries[Cunningham ’86] Algorithms No Are (nr2) queries necessary and sufficientto solve matroid intersection? D. J. A. Welsh, “Matroid Theory”, 1976. Can one prove any non-trivial lower boundon # queries to solve matroid intersection?

  16. Matroid Intersection Complexity O(nr2) queries[Lawler ’75] O(nr1.5) queries[Cunningham ’86] Algorithms 2n Cunningham UB Trivial LB n # queries 0 0 n/2 n Rank r

  17. Matroid Intersection Complexity O(nr1.5) queries[Cunningham ’86] Algorithms 2n Cunningham UB Trivial LB n Via Dual Matroids # queries 0 0 n/2 n Rank r

  18. Matroid Intersection Complexity O(nr1.5) queries[Cunningham ’86] Algorithms Optimal UB? 2n Cunningham UB Trivial LB n Via Dual Matroids # queries 0 0 n/2 n Rank r

  19. Matroid Intersection Complexity O(nr1.5) queries[Cunningham ’86] Algorithms Optimal UB? 2n Cunningham UB 1.58n Trivial LB n Via Dual Matroids # queries New LB [Harvey ’08] 0 0 n/2 n Rank r

  20. Lower Bound [Harvey ’08] • A family Mof matroids, each of rank n/2 • # oracle queries for any deterministic algorithm on inputs from M is: (log2 3) n - o(n) > 1.58n CommunicationComplexity RankComputation Hard Instances M= Alice Bob

  21. Hard InstancesBipartite Matching in Almost-2-Regular Graphs 1 Four verticeshave degree 1 3 2 4 • Is there a perfect matching?

  22. Hard InstancesBipartite Matching in Almost-2-Regular Graphs 1 Four verticeshave degree 1 3 2 4 • Is there a perfect matching? • No: if path from 1 to 2 • Yes: otherwise

  23. Permutation Formulation • Alice given  ∈Sn and Bob given  ∈Sn • In-Same-Cycle Problem:Are elements 1 and 2 in the same cycleof composition -1º? 1 1’ Permutation 2 2’ Permutation-1 3 3’ Elements 1 and 2are not in the same cycle 4 4’ 5 5’ 6 6’

  24. if -1 º  ∈G 1 otherwise 0 Main Result: rank C= (Moreover, it’s diagonalizable, all eigenvalues are integers, and they can be explicitly computed.) LB from Rank Computation • Let C be a matrix with rows and columnsindexed by permutations in Sn C, = where G= {  : 1 & 2 are in the same cycle of  } • C is adjacency matrix of Cayley graphfor Sn with generators G Corollary: # queries  log rank C =(log2 3)n - o(n).

  25. Main ProofA Tour of Algebraic Combinatorics • Step 0: Young Tableaux • Step 1: Decomposing G • Step 2: Decomposing C • Step 3: Block diagonalizing R • Step 4: Diagonalizing Xi • Wrap-up 3 7 2 1 4 5 6 G= {(1,2)} ×X3×X4 … ×Xn

  26. Young Diagrams Row i has i boxes 12…k>0 # boxes = n = ∑ii • Young diagram of shape =(1,2,...,k) • Standard Young Tableau of shape  • Main Result: rank C =# of SYT with n boxes such that 3 1 Place numbers {1,..,n} in boxes Rows increase → Columns increase ↓ 1 2 6 8 3 5 9 4 7 10 11 (and some other minor conditions)

  27. Main Proof • Step 0: Young Tableaux • Step 1: Decomposing G • Step 2: Decomposing C • Step 3: Block diagonalizing R • Step 4: Diagonalizing Xi • Wrap-up 3 7 2 1 4 5 6 G= {(1,2)} ×X3×X4 … ×Xn

  28. 3 2 1 5 4     ˜ ˜ ˜ ˜ 6 Decomposing Sn • Claim: ∈Sn  = ◦ (n,-1(n)), where ∈Sn-1 • Example: Let∈S6 be • Then ◦(7, 3)∈S7 is 3 7 2 1 4 5 6

  29.  ˜ ˜ Decomposing Sn • Claim: ∈Sn  = ◦ (n,-1(n)), where ∈Sn-1 • Restatement: Let Xi = { (j,i) : 1ji }.Then Sn = X2× … ×Xn.  = (2,2) ◦ (1,3) ◦ (2,4) ◦(3,5) ◦ (5,6) ◦ (3,7) 3 7 2 1 5 4 6

  30. DecomposingG • Let G = {  : 1 & 2 are in the same cycle } • Claim: Let Xi = { (j,i) : 1ji }.Then G = {(1,2)} × X3 × X4… ×Xn.  = (1,2) ◦ (1,3) ◦ (4,4) ◦(2,5) ◦ (5,6) ◦ (3,7) 3 7 2 1 4 5 6 1 & 2 remain in the same cycle

  31. Main Proof • Step 0: Young Tableaux • Step 1: Decomposing G • Step 2: Decomposing C • Step 3: Block diagonalizing R • Step 4: Diagonalizing Xi • Wrap-up G = {(1,2)}×X3×X4 …×Xn 3 7 2 1 4 5 6

  32. if -1 º  ∈G if -1 º  =  1 1 otherwise otherwise 0 0 Decomposing CRegular Representation • Recall:C is defined • C, = • Definition: R() is defined • R(),= • Thus:C = ∑∈GR()

  33. Main Proof • Step 0: Young Tableaux • Step 1: Decomposing G • Step 2: Decomposing C • Step 3: Block diagonalizing R • Step 4: Diagonalizing Xi • Wrap-up G = {(1,2)}×X3×X4 …×Xn 3 7 2 1 4 5 6 C = ∑∈G R()

  34. Decomposing R“Fourier Transform”  change-of-basis matrix B block-diagonalizing R() YoungTableaux R() BR()B-1 1  1 1 1 1 ′ 1 1 1 1 ′′ IrreducibleRepresentations

  35. Main Proof • Step 0: Young Tableaux • Step 1: Decomposing G • Step 2: Decomposing C • Step 3: Block diagonalizing R • Step 4: Diagonalizing Xi • Wrap-up G = {(1,2)}×X3×X4 …×Xn 3 7 2 1 4 5 6 C = ∑∈G R()

  36. Diagonalizing XiJucys-Murphy Elements • Let Xi = {(j,i): 1ji } • Let Y(Xi) = ∑∈XiBR()B-1,restricted to irreducible block  R() YoungTableaux BR()B-1  ′ ′′

  37. Diagonalizing XiJucys-Murphy Elements • Let Xi = {(j,i): 1ji } • Let Y(Xi) = ∑∈XiBR()B-1,restricted to irreducible block  ∑∈XiR() YoungTableaux ∑∈XiBR()B-1  ′ Y(Xi) ′′

  38. Diagonalizing XiJucys-Murphy Elements • Let Xi = {(j,i): 1ji } • Let Y(Xi) = ∑∈XiBR()B-1,restricted to irreducible block  • Fact: Y(Xi) is diagonal (and entries known) ∑∈XiR() YoungTableaux ∑∈XiBR()B-1  ′ Y(Xi) ′′

  39. Diagonalizing XiJucys-Murphy Elements • Let Xi = {(j,i): 1ji } • Let Y(Xi) = ∑∈XiBR()B-1,restricted to irreducible block  • Fact: Y(Xi) is diagonal, and entry Y(Xi)tj,tjis c-r+1, where i is in row r and col c of tj. • Let Xi = {(j,i): 1ji } • Let Y(Xi) = ∑∈XiBR()B-1,restricted to irreducible block  • Fact: Y(Xi) is diagonal (and entries known) Content Value YoungTableau  t1 t2 t3 t1 Y(X4) = t2 1 2 3 1 2 4 1 3 4 SYT 4 3 2 t3 t1 t2 t3

  40. Diagonalizing XiJucys-Murphy Elements • Let Xi = {(j,i): 1ji } • Let Y(Xi) = ∑∈XiBR()B-1,restricted to irreducible block  • Fact: Y(Xi) is diagonal, and entry Y(Xi)tj,tjis c-r+1, where i is in row r and col c of tj. • Let Xi = {(j,i): 1ji } • Let Y(Xi) = ∑∈XiBR()B,restricted to irreducible block  • Fact: Y(Xi) is diagonal (and entries known) Content Value YoungTableau  t1 t2 t3 t1 Y(X4) = t2 1 2 3 1 2 4 1 3 4 SYT 4 3 2 t3 t1 t2 t3

  41. Main Proof • Step 0: Young Tableaux • Step 1: Decomposing G • Step 2: Decomposing C • Step 3: Block diagonalizing R • Step 4: Diagonalizing Xi • Wrap-up G = {(1,2)}×X3×X4 …×Xn 3 7 2 1 4 5 6 C = ∑∈G R()

  42. Wrap-upDiagonalizing C Y({(1,2)})∙Y(X3) … Y(Xn) is diagonal  Y({(1,2)}×X3×…×Xn) is diagonal  Y(G ) is diagonal  ∑∈GBR()B-1 is diagonal  BCB-1 is diagonal (Step 4) (homomorphism) (Step 1) (Step 3) (Step 2)

  43. Wrap-upWhat are eigenvalues of C? Y(G )tj,tj 0  Y(Xi)tj,tj 0 i3 If i3 is in row c and col r of tj, then c-r+10  rank C = # SYT with 3  1 (and 2 below 1,...) Y(G )=Y({(1,2)}×X3×…×Xn) Content Value Content Values SYT tj c-r+1 1 2 3 4 1 0 No i3 cango here 0 1 2 0 2 0 -1 0 1 0 0  3  1 -2 1 0 0

  44. Main Proof • Step 0: Young Tableaux • Step 1: Decomposing G • Step 2: Decomposing C • Step 3: Block diagonalizing R • Step 4: Diagonalizing Xi • Wrap-up G = {(1,2)}×X3×X4 …×Xn 3 7 2 1 4 5 6 C = ∑∈G R() QED

More Related