410 likes | 738 Views
فصل هفدهم مدلها ي خودرگرس ي ون ي و با وقفه توز ي ع ي. فهرست. چكيده:.
E N D
فصل هفدهم مدلهاي خودرگرسيوني و با وقفه توزيعي فهرست
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي چكيده: چنانچه در تحليل رگرسيون در رابطه با سريهاي زماني ، مدل رگرسيون علاوه بر مقادير جاري، شامل مقادير با وقفة متغيرهاي توضيحي باشد، در اين صورت چنين مدلي را مدل با وقفة توزيعي و اگر مدل مورد تحليل در برگيرنده يك يا چند عنصر باوقفه از متغير وابسته به عنوان متغير توضيحي باشد، درآن صورت آن را مدل خود رگرسيوني مينامند. ۱- به طور كلي نقش وقفه در علم اقتصاد چيست؟ ۲- علل وجود آن كدامند؟ ۳- از لحاظ تئوريك آيا كاربرد مدلهاي با وقفه معمول در اقتصاد سنجي قابل توجيه است؟ ۴- آيا ارتباطي بين مدلهاي خود رگرسيوني و با وقفة توزيعي وجود دارد؟ در صورت وجود اين رابطه چگونه است؟ آيا ميتوان يكي را از ديگري استخراج نمود؟ ۵- در تخمين اين مدلها با چه مشكلات آماري مواجه هستيم؟
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي نقش زمان يا وقفه در اقتصاد • مثال) تابع مصرف: Yt = ثابت + 0.4 Xt+ 0.3 Xt-1+ 0.2 Xt-2+Ut 400 $ 600 $ 1800 $ 800 $ مثالي براي مدل با وقفه توزيعي مخارج مصرفی (دلار ) t
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي Xtβ0 اثر بر Y t β1 Xt β2 Xt β3 Xt β4 Xt . . . β0=0.4 β2 =0.2 β1 =0.3 t+1 t+2 t+3 اثر يك واحد تغيير در" X در زمان t " بر روي "متغيرY در همان زمان" و دورههاي بعد.
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي k å b = b + b + b + + b = b ...... i 0 1 2 k = i 0 • حالت كلي مدل باوقفه توزيعي با k تعداد وقفه زماني : (۲–۱–۱۷) β0: ضريب كوتاه مدت يا ضريب تاثير آني • ضريب بلند مدت يا ضريب تاثير با وقفه توزيعي كامل: (۳–۱–۱۷) استاندارد شده:
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي علل وجود وقفه: ۱- علل رواني; ۲- علل تكنولوژيكي; ۳- علل نهادي.
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي تخمين مدلهاي با وقفه توزيعي 1- روش تخميني ويژه: (مخصوص مدلهاي با وقفه توزيعي) 2- تخمين مدل با فرض محدوديتهايي براي βها
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي آلت و تينبرگر • مصرف مواد سوختي Y برحسب سفارشات جديد 8.37 + 0.171 Xt → بهترين8.27 + 0.111 Xt + 0.064Xt-1 8.27 + 0.109 Xt + 0.071Xt-1 – 0.055Xt-28.32 + 0.108Xt + 0.063Xt-1 + 0.022 Xt-2 – 0.02xt-3 • نقاط ضعف اين مدل: ۱- فقدان اطلاع قبلي در رابطه با حداكثر طول وقفهها. ۲- با افزايش تعداد وقفهها درجه آزادي كاهش مييابد. ۳- همبستگي بين مقادير پيدرپي وقفهها در دادههاي سريزماني.
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي روش كويك در رابطه با مدلهاي با وقفه توزيعي • فرض: نرخ تنزيل يا كاهش وقفه توزيعي0 < λ <1 سرعت تعديل:1-λ ويژگيهاي مدل كويك: ۱- با فرض 0 < λ، علامت β ها تغييري نمييابد. ۲- بافرض λ < 1، وزنهاي كمتري به مقادير دورتر β نسبت به مقادير جاري داده ميشود. ۳- اين روش تضمين ميكند كه مجموع βها (كه همان ضريب بلندمدت است) معينومحدود باشد
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي مدل با بينهايت وقفه توزيعي • تبديل كويك : • Vt:ميانگين متحرك از Ut و Ut-1
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي ويژگيهاي تبديل كويك ۱- با اين تبديل از يك مدل با وقفةتوزيعي به يك مدل خودرگرسيوني رسيديم. ۲- Yt-1 يك متغير استوكاستيك است و در تئوري حداقل مربعات كلاسيك متغير توضيحي بايد غير استوكاستيك و يا درصورت استو كاستيك بودن، مستقل از جزء اخلال استو كاستيك توزيع شده باشد. ۳- خواص آماري Vt به خواص Ut بستگي دارد. اگر Utهاي اصلي همبستگي سريالي داشته باشند، Vtها نيز داراي همبستگي سريالي خواهند بود. ۴- يكي از فروض اساسي كاربرد تابع آزمون d دوربين- واتسون يعني عدم وجود متغير با وقفه Y نقض ميشود لذا بايد از آزمون h دوربين استفاده شود.
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي • ميانه وقفه: زمان لازم براي تحقق 50% كل تغيير در Y به ازاء 1 واحد تغيير در x . ميانه وقفه مدل كويك • ميانگين وقفه: زمان لازم براي تحقق كل تغيير در Y به ازاء 1 واحد تغيير در x . ميانگين وقفه كويكميانگين وقفه
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي شواهدي در تاييد مدل كويك الف- مدل انتظارات تطبيقي (AE) : (۱–۵–۱۷) Y : تقاضاي پول X*: نرخ بهره متعادل، بلندمدت يا نرمال يا موردانتظار U : جزء خطا
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي فرضيه انتظارات تطبيقي ضريب انتظار : 0 ≤ γ ≤ 1 (۳–۵–۱۷) با جايگذاري (۳–۵–۱۷) در (۱–۵–۱۷) داريم: (۴–۵–۱۷) يك وقفه به (۱–۵–۱۷) ميدهيم : تشابه و تفاوت مدل انتظارات تطبيقي و مدل كويك چيست؟
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي ب: مدل تعديل جزيي يا تعديل موجودي سرمايه ( 2– 6– 17) Yt*: ميزان مطلوب سرمايه Xt : محصول
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي فرضيه تعديل جزيي: (0 ≤ δ ≤1) = ضريب تعديل تغيير واقعي سرمايه= سرمايهگذاري = (Yt-Yt-1 ) تغيير مطلوب سرمايه=(Yt*-Y*t-1 ) (۳–۶–۱۷) δ = 1: موجودي واقعي سرمايه مساوي موجودي مطلوب سرمايه است. δ = 0: هيچ تغييري صورت نميگيرد. مدل تعديل جزيي: (۵–۶–۱۷)
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي • ٭ مدل انتظارات تطبيقي ← براساس اصل عدم اطمينان ٭ مدل تعديل جزيي ← بر مبناي چسبندگيهاي نهادي فني، كندي تعديل، هزينههاي تغيير و .... .
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي تلفيق مدل انتظارات تطبيقي و تعديل جزيي Yt*: سطح موجودي مطلوب سرمايه Xt*: سطح مورد انتظار محصول - مدل درآمد دايمي فريدمن مصداق مدل حاضر ميباشد.
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي تخمين مدلهاي خودرگرسيوني مدل كويك: مدل انتظارات تطبيقي: مدل تعديل جزيي: صورت كلي:
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي دو اشكال مدلهاي خود رگرسيوني: ۱- وجود متغير توضيحي استو كاستيك ۲- امكان وجود خود همبستگي سريالي در اجزاء اخلال براي مثالدر مدل كويك: (2 - 8 - 17 ) زيرا: و يا داريم: (۳–۸–۱۷) - قبلاً ديديم كه در صورت وجود همبستگي بين متغيرتوضيحي در مدل رگرسيون با جزء اخلال،تخمينزنهاي OLS نه تنها توشدار، بلكه ناسازگار خواهند بود. همچنين در مدل تعديل جزيي: Vt= δUt 0 < δ < 1 پس اگر Ut فروض مدل كلاسيك را برآورده سازد، در اين صورت Ut هم اين خصوصيات را خواهد داشت در اين حالت با تخمينزنهايي تورشدار ولي سازگار مواجهيم، چرا؟
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي علت برتري مدل تعديل جزيي بر مدلهاي كويك و انتظارات تطبيقي چيست؟
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي روش متغيرهاي ابزاري: (IV) • متغير ابزاري: متغيري كه جانشين متغير اصلي در مدل ميشود و عليرغم همبستگي شديد با Yt-1 با Vt همبسته نباشد.
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي راه حل ليوياتان: ۱- Xt-1 را جانشين Yt-1 سازيم. ۲- پارامترهاي رگرسيون (۱–۸–۱۷) را به وسيله حل معادلات نرمال بدستآوريم. (۱–۹–۱۷)
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي • و اگر مستقيماً روش OLS را براي (۱–۸–۱۷) به كار بريم، آنگاه معادلات نرمال OLS عبارتند از: (۲–۹–۱۷) مقايسه كنيد؟
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي اشكال ليوياتان • امكان بروز همخطي بين Xt و Xt-1 • يافتن جانشين مناسب براي xt-1مشكل است.
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي كشف خود همبستگي در مدلهاي خود رگرسيوني:آزمون h دوربين N: حجم نمونه : واريانس ضريب Yt-1 : تخمين ضريب همبستگي سريالي از درجه اول براي نمونههاي كوچك : (۱۱–۶–۱۷) (۲–۱۰–۱۷) از توزيع نرمال ميدانيم كه:
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي قاعده تصميمگيري الف- if h > 1.96← فرضيه عدم كه طبق آن خودهمبستگي از درجه اول مثبت وجودندارد، رد ميشود. ب- if h < -1.96← فرضيه عدم كه طبق آن خودهمبستگي از درجه اول منفي وجود ندارد، رد ميشود. ج- if -1.96 < h < 1.96← فرضيه عدم كه طبق آن خود همبستگي از درجه اول (مثبت يا منفي) وجود ندارد، قابل رد نيست.
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي مثال عددي: تقاضاي پول در هندوستان (1- 11- 17) (2- 11- 17) Mt* : تقاضاي بلند مدت يا مطلوب Rt : نرخ بهره بلندمدت به درصد Yt : درآمد ملي حقيقي كل فرضيه تعديل موجودي انبار را به شکل زير در مي آوريم: تابع تقاضاي کوتاه مدت :
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي الگوي وقفهاي چند جملهاي آلمون: • (قسمت a) βi = a0+ a1i + a2i2 • (قسمت c ) βi = a0+ a1i + a2i2 + a3 i 3
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي نكات: ۱- حداكثر طول وقفه k بايستي از قبل مشخص باشد. ۲- پس از تعيين k، درجه چند جملهاي M نيز بايد مشخص شود. (۹–۱۳–۱۷) كهميباشد. ۳- پس از تعيين M و k ، به راحتي ميتوان z ها را تشكيل داد. نكته: zها تركيببي خطي از xهاي اوليه هستند و در نتيجه احتمال وجود همخطي در آنها بسيار است.
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي مزاياي روش آلمون ۱- اين روش، روش انعطافپذير در رابططه با ساختارهاي گوناگون وقفه ميباشد. در حاليكه روش كويك تنها زماني كاربرد دارد كه ضرايب β از نظر هندسي كاهش باشند. ۲- جاي نگراني دررابطه با وجود متغير وابسته وقفهدار به عنوان يك متغير توضيحي و بروز مشكلات تخميني ناشي از آن وجود ندارد. ۳- چنانچه درجه چند جملهاي مورد برازش پايين باشد، در اين صورت تعداد ضرايب تخميني به طور قابل ملاحظهاي از تعداد اوليه ضرايب (βها) كمتر خواهد بود. مشكلات تكنيك آلمون: ۱- تصميمگيري براي درجة چند جملهاي و طول وقفه بسيار ذهني خواهد بود. ۲- احتمال بالاي خطاي استاندارد (معيار) براي متغيرهاي z .
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي مثال عددي (۱۱–۱۳–۱۷) Y: موجودي انبارX:فروش Ŷ =-7140.7564 + 0.6612 Z0t + 0.9020 Z1t – 0.4322 Z2t (1992.9809)(0.1655) (0.4831) (0.166( t = (-4.0847)(3.996) (1.8671)) -2.5961) df = 13
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي دو ويژگي ديگر: ۱- خطاي معيار aها مستقيماً قابل حصول است در حاليكه براي برخي از ضرايب تخمينيβخير. ۲- ضرايب تخمينيβ بدست آمده: تخمينهاي محدود نشده هستند.
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي عليت درعلم اقتصاد: آزمون گرنجر (۱–۱۴–۱۷) (۲–۱۴–۱۷) - ۱ چنانچه ضريب تخميني با وقفهM در(۱–۱۴–۱۷)به صورت حاصل جمع از نظر آماري غير صفر و مجموع ضرايب تخميني با وقفه GNP در(۲–۱۴–۱۷) از نظر آماري صفر باشد، عليت يكطرفه ازMبه GNP خواهيم داشت و برعكس. ۲- اگر مجموع ضرايب GNP, M در هر دو رگرسيون معنيدار نباشد دو متغير مستقل از يكديگرند.
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي نتايج تجربي: ( دورهI-1960تا IV1970-)
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي خلاصهو نتايج ۱- گاهي در اقتصاد و به دلايل عوامل نهادي، فني و رواني متغير اقتصادي وابسته Y با يك تاخير زماني به متغير تعيين كننده اقتصادي X پاسخ ميدهد. ۲- دو نوع وقفه داريم: ۱- متغير توضيحي با وقفه و ۲- متغير وابسته باوقفه. مدلهاي رگرسيوني كه شامل مقادير با وقفه متغير وابسته به صورت متغير توضيحي هستند را مدلهاي خود رگرسيوني ميگويند. ۳- در مدلهاي با وقفه درجه آزادي كاهشيافته و امكان و نوع همخطي بالاست. ۴- در اين فصل با روشهاي كويك، آلمون، گرنجر،..... آشنا شديم.
فصل هفدهم: مدلهاي خودرگرسيوني و با وقفه توزيعي پايان