1 / 69

Influence propagation in large graphs - theorems and algorithms

Influence propagation in large graphs - theorems and algorithms. B. Aditya Prakash http://www.cs.cmu.edu/~badityap Christos Faloutsos http://www.cs.cmu.edu/~christos Carnegie Mellon University. GraphEx’12. Thank you!. Nadya Bliss Lori Tsoulas. Networks are everywhere!.

idania
Download Presentation

Influence propagation in large graphs - theorems and algorithms

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Influence propagation in large graphs - theorems and algorithms B. AdityaPrakash http://www.cs.cmu.edu/~badityap Christos Faloutsos http://www.cs.cmu.edu/~christos Carnegie Mellon University GraphEx’12

  2. Thank you! • Nadya Bliss • Lori Tsoulas Prakash and Faloutsos 2012

  3. Networks are everywhere! Facebook Network [2010] Gene Regulatory Network [Decourty 2008] Human Disease Network [Barabasi 2007] The Internet [2005] Prakash and Faloutsos 2012

  4. Dynamical Processes over networks are also everywhere! Prakash and Faloutsos 2012

  5. Why do we care? • Information Diffusion • Viral Marketing • Epidemiology and Public Health • Cyber Security • Human mobility • Games and Virtual Worlds • Ecology • Social Collaboration ........ Prakash and Faloutsos 2012

  6. Why do we care? (1: Epidemiology) • Dynamical Processes over networks [AJPH 2007] CDC data: Visualization of the first 35 tuberculosis (TB) patients and their 1039 contacts Diseases over contact networks Prakash and Faloutsos 2012

  7. Why do we care? (1: Epidemiology) • Dynamical Processes over networks • Each circle is a hospital • ~3000 hospitals • More than 30,000 patients transferred [US-MEDICARE NETWORK 2005] Problem: Given k units of disinfectant, whom to immunize? Prakash and Faloutsos 2012

  8. Why do we care? (1: Epidemiology) ~6x fewer! [US-MEDICARE NETWORK 2005] CURRENT PRACTICE OUR METHOD Hospital-acquired inf. took 99K+ lives, cost $5B+ (all per year) Prakash and Faloutsos 2012

  9. Why do we care? (2: Online Diffusion) > 800m users, ~$1B revenue [WSJ 2010] ~100m active users > 50m users Prakash and Faloutsos 2012

  10. Why do we care? (2: Online Diffusion) • Dynamical Processes over networks Buy Versace™! Followers Celebrity Social Media Marketing Prakash and Faloutsos 2012

  11. High Impact – Multiple Settings epidemic out-breaks Q. How to squash rumors faster? Q. How do opinions spread? Q. How to market better? products/viruses transmit s/w patches Prakash and Faloutsos 2012

  12. Research Theme ANALYSIS Understanding POLICY/ ACTION Managing DATA Large real-world networks & processes Prakash and Faloutsos 2012

  13. In this talk Given propagation models: Q1: Will an epidemic happen? ANALYSIS Understanding Prakash and Faloutsos 2012

  14. In this talk Q2: How to immunize and control out-breaks better? POLICY/ ACTION Managing Prakash and Faloutsos 2012

  15. Outline • Motivation • Epidemics: what happens? (Theory) • Action: Who to immunize? (Algorithms) Prakash and Faloutsos 2012

  16. A fundamental question Strong Virus Epidemic? Prakash and Faloutsos 2012

  17. example (static graph) Weak Virus Epidemic? Prakash and Faloutsos 2012

  18. Problem Statement # Infected above (epidemic) below (extinction) time Separate the regimes? Find, a condition under which • virus will die out exponentially quickly • regardless of initial infection condition Prakash and Faloutsos 2012

  19. Threshold (static version) Problem Statement • Given: • Graph G, and • Virus specs (attack prob. etc.) • Find: • A condition for virus extinction/invasion Prakash and Faloutsos 2012

  20. Threshold: Why important? • Accelerating simulations • Forecasting (‘What-if’ scenarios) • Design of contagion and/or topology • A great handle to manipulate the spreading • Immunization ….. Prakash and Faloutsos 2012

  21. Outline • Motivation • Epidemics: what happens? (Theory) • Background • Result (Static Graphs) • Proof Ideas (Static Graphs) • Bonus 1: Dynamic Graphs • Bonus 2: Competing Viruses • Action: Who to immunize? (Algorithms) Prakash and Faloutsos 2012

  22. Background “SIR” model: life immunity (mumps) • Each node in the graph is in one of three states • Susceptible (i.e. healthy) • Infected • Removed (i.e. can’t get infected again) Prob. β Prob. δ t = 1 t = 2 t = 3 Prakash and Faloutsos 2012

  23. Background Terminology: continued • Other virus propagation models (“VPM”) • SIS : susceptible-infected-susceptible, flu-like • SIRS : temporary immunity, like pertussis • SEIR : mumps-like, with virus incubation (E = Exposed) ….…………. • Underlying contact-network – ‘who-can-infect-whom’ Prakash and Faloutsos 2012

  24. Background Related Work • All are about either: • Structured topologies (cliques, block-diagonals, hierarchies, random) • Specific virus propagation models • Static graphs • R. M. Anderson and R. M. May. Infectious Diseases of Humans. Oxford University Press, 1991. • A. Barrat, M. Barthélemy, and A. Vespignani. Dynamical Processes on Complex Networks. Cambridge University Press, 2010. • F. M. Bass. A new product growth for model consumer durables. Management Science, 15(5):215–227, 1969. • D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos. Epidemic thresholds in real networks. ACM TISSEC, 10(4), 2008. • D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, 2010. • A. Ganesh, L. Massoulie, and D. Towsley. The effect of network topology in spread of epidemics. IEEE INFOCOM, 2005. • Y. Hayashi, M. Minoura, and J. Matsukubo. Recoverable prevalence in growing scale-free networks and the effective immunization. arXiv:cond-at/0305549 v2, Aug. 6 2003. • H. W. Hethcote. The mathematics of infectious diseases. SIAM Review, 42, 2000. • H. W. Hethcote and J. A. Yorke. Gonorrhea transmission dynamics and control. Springer Lecture Notes in Biomathematics, 46, 1984. • J. O. Kephart and S. R. White. Directed-graph epidemiological models of computer viruses. IEEE Computer Society Symposium on Research in Security and Privacy, 1991. • J. O. Kephart and S. R. White. Measuring and modeling computer virus prevalence. IEEE Computer Society Symposium on Research in Security and Privacy, 1993. • R. Pastor-Santorras and A. Vespignani. Epidemic spreading in scale-free networks. Physical Review Letters 86, 14, 2001. • ……… • ……… • ……… Prakash and Faloutsos 2012

  25. Outline • Motivation • Epidemics: what happens? (Theory) • Background • Result (Static Graphs) • Proof Ideas (Static Graphs) • Bonus 1: Dynamic Graphs • Bonus 2: Competing Viruses • Action: Who to immunize? (Algorithms) Prakash and Faloutsos 2012

  26. How should the answer look like? ….. • Answer should depend on: • Graph • Virus Propagation Model (VPM) • But how?? • Graph – average degree? max. degree? diameter? • VPM – which parameters? • How to combine – linear? quadratic? exponential? Prakash and Faloutsos 2012

  27. Static Graphs: Our Main Result • Informally, w/ Deepay Chakrabarti • For, • any arbitrary topology (adjacency • matrix A) • any virus propagation model (VPM) in • standard literature • the epidemic threshold depends only • on the λ,firsteigenvalueof A,and • some constant , determined by the virus propagation model λ • No epidemic if λ * < 1 In Prakash+ ICDM 2011 (Selected among best papers). Prakash and Faloutsos 2012

  28. Our thresholds for some models s = effective strength s < 1 : below threshold Prakash and Faloutsos 2012

  29. Our result: Intuition for λ “Official” definition: “Un-official” Intuition  λ ~ # paths in the graph • Let A be the adjacency matrix. Then λ is the root with the largest magnitude of the characteristic polynomial of A [det(A – xI)]. • Doesn’t give much intuition! u u ≈ . (i, j) = # of paths i j of length k Prakash and Faloutsos 2012

  30. Largest Eigenvalue (λ) better connectivity higher λ λ ≈ 2 λ = N λ = N-1 λ ≈ 2 λ= 31.67 λ= 999 N = 1000 N nodes Prakash and Faloutsos 2012

  31. Examples: Simulations – SIR (mumps) Fraction of Infections Footprint (a) Infection profile (b) “Take-off” plot PORTLAND graph: synthetic population, 31 million links, 6 million nodes Effective Strength Time ticks Prakash and Faloutsos 2012

  32. Examples: Simulations – SIRS (pertusis) Fraction of Infections Footprint (a) Infection profile (b) “Take-off” plot PORTLAND graph: synthetic population, 31 million links, 6 million nodes Time ticks Effective Strength Prakash and Faloutsos 2012

  33. Outline • Motivation • Epidemics: what happens? (Theory) • Background • Result (Static Graphs) • Proof Ideas (Static Graphs) • Bonus 1: Dynamic Graphs • Bonus 2: Competing Viruses • Action: Who to immunize? (Algorithms) Prakash and Faloutsos 2012

  34. General VPM structure Model-based See paper for full proof λ * < 1 Graph-based Topology and stability

  35. Outline • Motivation • Epidemics: what happens? (Theory) • Background • Result (Static Graphs) • Proof Ideas (Static Graphs) • Bonus 1: Dynamic Graphs • Bonus 2: Competing Viruses • Action: Who to immunize? (Algorithms) Prakash and Faloutsos 2012

  36. Dynamic Graphs: Epidemic? Alternating behaviors • DAY • (e.g., work) adjacency matrix 8 8 Prakash and Faloutsos 2012

  37. Dynamic Graphs: Epidemic? Alternating behaviors • NIGHT • (e.g., home) adjacency matrix 8 8 Prakash and Faloutsos 2012

  38. Prob. β Prob. β Model Description • SIS model • recovery rate δ • infection rate β • Set of T arbitrary graphs day night N N N N Healthy N2 , weekend….. N1 X Prob. δ Infected N3 Prakash and Faloutsos 2012

  39. Our result: Dynamic Graphs Threshold • Informally, NOepidemic if eig(S) = < 1 Single number! Largest eigenvalue of The system matrix S Details S = In Prakash+, ECML-PKDD 2010 Prakash and Faloutsos 2012

  40. Infection-profile log(fraction infected) MIT Reality Mining Synthetic ABOVE ABOVE AT AT BELOW BELOW Time Prakash and Faloutsos 2012

  41. “Take-off” plots Footprint (# infected @ “steady state”) Synthetic MIT Reality EPIDEMIC Our threshold Our threshold EPIDEMIC NO EPIDEMIC NO EPIDEMIC (log scale) Prakash and Faloutsos 2012

  42. Outline • Motivation • Epidemics: what happens? (Theory) • Background • Result (Static Graphs) • Proof Ideas (Static Graphs) • Bonus 1: Dynamic Graphs • Bonus 2: Competing Viruses • Action: Who to immunize? (Algorithms) Prakash and Faloutsos 2012

  43. Competing Contagions iPhone v Android Blu-ray v HD-DVD Biological common flu/avian flu, pneumococcal inf etc Prakash and Faloutsos 2012

  44. Details A simple model • Modified flu-like • Mutual Immunity (“pick one of the two”) • Susceptible-Infected1-Infected2-Susceptible Virus 2 Virus 1 Prakash and Faloutsos 2012

  45. Question: What happens in the end? green: virus 1 red: virus 2 Number of Infections • Footprint @ Steady State • Footprint @ Steady State = ? ASSUME: Virus 1 is stronger than Virus 2 Prakash and Faloutsos 2012

  46. Question: What happens in the end? • Footprint @ Steady State • Footprint @ Steady State green: virus 1 red: virus 2 Number of Infections Strength Strength ?? = 2 Strength Strength ASSUME: Virus 1 is stronger than Virus 2 Prakash and Faloutsos 2012

  47. Answer: Winner-Takes-All green: virus 1 red: virus 2 Number of Infections ASSUME: Virus 1 is stronger than Virus 2 Prakash and Faloutsos 2012

  48. Our Result: Winner-Takes-All Given our model, and any graph, the weaker virus always dies-out completely Details The stronger survives only if it is above threshold Virus 1 is stronger than Virus 2, if: strength(Virus 1) > strength(Virus 2) Strength(Virus) = λβ / δ same as before! In Prakash+ WWW 2012 Prakash and Faloutsos 2012

  49. Real Examples [Google Search Trends data] Reddit v Digg Blu-Ray v HD-DVD Prakash and Faloutsos 2012

  50. Outline • Motivation • Epidemics: what happens? (Theory) • Action: Who to immunize? (Algorithms) Prakash and Faloutsos 2012

More Related