350 likes | 540 Views
State Representation of State Space Searching. Alan Tam Siu Lung Tam@SiuLung.com 99967891 96397999. Prerequisite. State Space Search Pascal/C/C++ Familiar with the data types Mathematics. Generic Graph Searching Algorithm. c: container of states insert start to c while c not empty
E N D
State RepresentationofState Space Searching Alan Tam Siu Lung Tam@SiuLung.com 99967891 96397999
Prerequisite • State Space Search • Pascal/C/C++ • Familiar with the data types • Mathematics
Generic GraphSearching Algorithm • c: container of states • insert start to c • while c not empty • pop an element from c (with minimum total cost) • if found goal, return • add/update some elements in c
Generic Graph Searching • Best first search: choose the node with minimum estimated total path cost = current path cost + estimated cost to goal • Uniform cost search: estimated cost to goal = 0 • Breadth first search: current path cost = depth of the node in an un-weighted graph • Depth first search: estimated total path cost = inverse of current path cost
States Storage Problem • Need to store many states • Memory is limited • Runtime is limited • Compiler is stupid • we need intelligence to represent states wisely
Operation on States • 3 operations: • Is goal? • Are these 2 states equal? • Find all neighbors. • Questions • Can some operation be slow? • Can we pre-compute? (i.e. store redundant info) • Can states be not uniquely represented?
8-puzzle • struct state { • int num[9]; • int space_pos; • }; • record state • num : array[1..9] of 0..8 • space_pos: 1..9; • end;
Entropy • Possible Different states: 181440 • Space we used? 320 bits • Using bytes? 80 bits
Missionaries and Cannibals • struct state { • int m[2], c[2]; • bool b; • }; • record state • m, c : array[1..2] of 1..3; • b : boolean • end;
Entropy • Possible Different states: 16 • Space we used? 160 bits • Using bytes? 40 bits • One side only? 24 bits
Be realistic • |{3, 2, 1, 0}|2 |{L, R}| = 32 • Store it as M + C * 4 + B * 16 • |{3M3C, 3M2C, 3M1C, 3M, 2M2C, 1M1C, 3C, 2C, 1C, }| |{L, R}| = 20
Computer Organization • x86 stores whole numbers in: • Binary Form • x86 stores negative integers in: • 2’s complement • x86 stores real numbers in: • IEEE 754 • x86 stores alphabets in: • ASCII
Integer Representation 46709394 (10) = 00000010110010001011101010010010 (2) = 0C C8 BA 92 (16) (0x0cc8ba92 in C/C++) Little Endian:
State Representation • M + C * 4 + B * 16 • M=3, C=3, B=0 • 00001111 (=15) • M=0, C=0, B=1 • 00010000 (=16) • M=2, C=2, B=1 • 00011010 (=26)
If you discovered… • M=3, C=3, B=0 • 00001111 (=15) • M=0, C=0, B=1 • 00010000 (=16) • M=2, C=2, B=1 • 00011010 (=26) • This is Bitwise Representation
Why bitwise? • It is the native language of the computer • It works extremely fast • Integer Multiplication: 4 cycles latency • Moving Bits: 1 cycle latency • Packing and unpacking is easier to code and thus less error prone
Binary << shl >> shr & and | or ^ xor Unary ~ not shift # bits left shift # bits right intersection union mutual exclusion complement Bitwise Operations
Bitmap • Shift operators and bitwise operators can be used to manage a sequence of bits of 64 elements • Operations • Get(p : 0..Size-1) : Boolean • Set(p : 0..Size-1) • Unset(p : 0..Size-1) • Toggle(p : 0..Size-1)
Using a 32-bit Integer • 00000010110010001011101010010010 • 1 << p = a number with only bit p on • value & (1 << p) != 0 Get(p) • value = value | (1 << p) Set(p) • value = value & ~(1 << p) Unset(p) • value = value ^ (1 << p) Toggle(p) Bit 0 Bit 31
Using Bitmap • Space-efficient • Runtime may be faster • Cache hit • Less copying • Or maybe slower • More calculations
Massive Calculations • Example: Count number of bits on a 16-bit integer v • v = (v & 0x5555) + ((v >> 1) & 0x5555) • v = (v & 0x3333) + ((v >> 2) & 0x3333) • v = (v & 0x0f0f) + ((v >> 4) & 0x0f0f) • v = (v & 0x00ff) + ((v >> 8) & 0x00ff)
Counting #bits • 1 0 0 1 1 1 1 1 0 0 0 1 0 0 1 0 • 01 01 10 10 00 01 00 01 • 0010 0100 0001 0001 • 00000110 00000010 • 0000000000001000 • Exercise: Do it for 32-bit
Massive Calculations • Given a bit pattern, find a bit pattern which: • only the leftmost bit of a bit group is on • E.g. • 1110101101111001 becomes1000101001000001
Answer • 1110101101111001 becomes1000101001000001 • The leftmost of a bit group means: • It is 1 • Its left is 0 • So: • value = value & ~(value >> 1)
Bit Movements • Question • 1 1 0 1 0 1 0 0becomes0101000100010000 • Solution • value = ((value & 0x00f0) << 4)) | (value & 0x000f) • value = ((value & 0x0c0c) << 2)) | (value & 0x0303) • value = ((value & 0x2222) << 1)) | (value & 0x1111) • Exercise • 1 1 0 1 0 1 0 0becomes1111001100110000 • 0 1 0 1becomes0000111100001111
Complex Bit Patterns • Othello • 11101011 (where occupied) • 10001001 (color) • You are 1, where you can play? • Solution • 11101011 & ~10001001 = 01100010 • 11101011 + 01100010 = 01001101 • 01001101 & ~11101011 = 00000100 • How about the reverse direction?
Other Uses • Store multiple values, each one assigned a bit-range • (value % 32) == (value & 31) • Storing sets of 64 elements • Union • Difference • Is Subset
switch (i) { case 1: case 3: case 4: case 7: case 8: case 10: f(); break; default: g(); } if ((1<<i) & 0x039a) f(); else g(); Multiple Comparisons
Lexicographical Ordering • Consider the 8 puzzle • Store it verbatim: 89 = 387420489 • Hash table? How large? • Calculate a mapping from the 362880 possible permutations to 0..362879
Example • What are smaller than 530841672? • 5308416[0-6]?: 1 1 • 530841[0-5]??: 1 2 • 53084[0-0]???: 0 6 • 5308[0-3]????: 2 24 • 530[0-7]?????: 5 120 • 53[^]??????: 0 720 • 5[0-2]???????: 3 5040 • [0-4]????????: 5 40320