1 / 17

Rob Russell Cell Networks University of Heidelberg

Putting it all together to answer a “real” question. Rob Russell Cell Networks University of Heidelberg. Domains assemble to form higher-order structures. Pawson & Nash, Science, 2003. Case study 1: GabaB R1/R2. Family 3 GPCRs Subunit R1 binds ligands, R2 signals, but not vice versa

ila-pate
Download Presentation

Rob Russell Cell Networks University of Heidelberg

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Putting it all together to answer a “real” question Rob Russell Cell Networks University of Heidelberg

  2. Domains assemble to form higher-order structures Pawson & Nash, Science, 2003

  3. Case study 1: GabaB R1/R2 • Family 3 GPCRs • Subunit R1 binds ligands, R2 signals, but not vice versa • Why?

  4. Analysis of intrinsic features Signal peptide Transmembrane helices Low complexity Coiled coil region PFAM analysis >gi|3776094|emb|CAA09940.1| GABAB receptor, subunit 1b [Homo sapiens] MGPGAPFARVGWPLPLLVVMAAGVAPVWASHSPHLPRPHSRVPPHPSSERRAVYIGALFPMSGGWPGGQACQPAVEMALEDVNSRRDILPDYELKLIHHDSKCDPGQATKYLYELLYNDPIKIILMPGCSSVSTLVAEARMWNLIVLSYGSSSPALSNRQRFPTFFRTHPSATLHNPTRVKLFEKWGWKKIATIQQTTEVFTSTLDDLEERVKEAGIEITFRQSFFSDPAVPVKNLKRQDARIIVGLFYETEARKVFCEVYKERLFGKKYVWFLIGWYADNWFKIYDPSINCTVDEMTEAVEGHITTEIVMLNPANTRSISNMTSQEFVEKLTKRLKRHPEETGGFQEAPLAYDAIWALALALNKTSGGGGRSGVRLEDFNYNNQTITDQIYRAMNSSSFEGVSGHVVFDASGSRMAWTLIEQLQGGSYKKIGYYDSTKDDLSWSKTDKWIGGSPPADQTLVIKTFRFLSQKLFISVSVLSSLGIVLAVVCLSFNIYNSHVRYIQNSQPNLNNLTAVGCSLALAAVFPLGLDGYHIGRNQFPFVCQARLWLLGLGFSLGYGSMFTKIWWVHTVFTKKEEKKEWRKTLEPWKLYATVGLLVGMDVLTLAIWQIVDPLHRTIETFAKEEPKEDIDVSILPQLEHCSSRKMNTWLGIFYGYKGLLLLLGIFLAYETKSVSTEKINDHRAVGMAIYNVAVLCLITAPVTMILSSQQDAAFAFASLAIVFSSYITLVVLFVPKMRRLITRGEWQSEAQDTMKTGSSTNNNEEEKSRLLEKENRELEKIIAEKEERVSELRHQLQSRQQLRSRRHPPTPPEPSGGLPRGPPEPPDRLSCDGSRVHLLYK Homology to known structure can be used to create model

  5. Family III GPCRs Ligand binding domain R1 cut EC2 EC1 EC3 1 2 3 4 5 6 7 dimerisation IC2 IC1 IC3 Cterm - - - G-protein

  6. R1 binds ligand R2 signals Robbins et al, J. Neurosci, 21, 8043, 2001

  7. GabaB R1/R2 Ligand binding domain R2 R1 (none) EL2 EL1 EL3 EL2 EL1 EL3 1 2 3 4 5 6 7 1 2 3 4 5 6 7 - IL2 IL2 IL1 IL1 - - - IL3 Cterm IL3 Cterm blocked - - - G-protein

  8. Case study 2: Human RYKan inactive tyrosine kinase

  9. Human RYK model Human RYK (model) Insulin receptor YK (template) Katso, Russell, Ganesan, Mol Cell Biol, 19, 6427, 1999

  10. Case study 3: What are phosphorylation sites doing? Van Noort et al, Mol Sys Biol, 2012

  11. MPN134 is phosphorylated at Serine 392 Katso, Russell, Ganesan, Mol Cell Biol, 19, 6427, 1999

  12. What do modifications do to interfaces? From polar to negatively charged From positively charged to polar Modelled MPN134 homodimer: From a polar-polar interaction to a pair of negative charges in proximity Van Noort et al, Mol Sys Biol, 2012

  13. Homology modelling algorithm +

  14. Homology modelling steps • Identify the homologue of known structure • Get the best alignment of your sequence to the structure • Model building • Side-chain replacement • Loop building • Optimisation/relaxation/minimisation

  15. Problem with loops Two subtilisin-like serine proteases

More Related