560 likes | 778 Views
A Unified Multiresolution Framework for Automatic Target Recognition. Eric Grimson, Alan Willsky, Paul Viola, Jeremy S. De Bonet, and John Fisher. Artificial Intelligence Laboratory & Laboratory for Information and Decision Systems Massachusetts Institute of Technology. Outline.
E N D
MIT AI Lab / LIDS A Unified Multiresolution Framework for Automatic Target Recognition Eric Grimson, Alan Willsky, Paul Viola, Jeremy S. De Bonet, and John Fisher Artificial Intelligence Laboratory & Laboratory for Information and Decision Systems Massachusetts Institute of Technology
MIT AI Lab / LIDS Outline • Review Multiresolution Analysis Models • MAR (Multiresolution Auto-Regressive) • MNP (Multi-scale Nonparametric) • Applications of MNP Models • Classification/Recognition • Segmentation and Multi-Look Registration • Synthesis and Super-Resolution • Continuing Efforts
MIT AI Lab / LIDS MAR Processes for SAR Irving, Willsky & Novak Pyramid Residuals
MIT AI Lab / LIDS Intuition: Construct a Model for the Scale-to-scale Dependency in SAR imagery L0 Parent Vector L1 V(x,y)={} L2 L3 L4
MIT AI Lab / LIDS Build a Model for Observed Distribution IWN: Conditionally Gaussian
MIT AI Lab / LIDS Multi-scale Non-parametric Models • Two key insights: • Alternative multi-scale representation • Sub-band oriented representations (Wavelets, Gabor Filters) • Non-parametric models of conditional dependence De Bonet & Viola (1997)
MIT AI Lab / LIDS Steerable Pyramids Freeman and Simoncelli
MIT AI Lab / LIDS …for a SAR image
MIT AI Lab / LIDS Multiresolution parent vector Parent Vector V(x,y)={} coarse fine
MIT AI Lab / LIDS Build a Model for Observed Distribution DB: Non-parametric Distribution
MIT AI Lab / LIDS Probabilistic Model Markov Conditionally Independent Successive Conditioning
MIT AI Lab / LIDS Estimating Conditional Distributions • Non-parametrically
MIT AI Lab / LIDS Outline synthesis sample registration discrimination distribution Likelihood Similarity example image segmentation denoising distribution condition super resolution
MIT AI Lab / LIDS Capturing Structure (Texture Perspective)
MIT AI Lab / LIDS Synthesis Results
MIT AI Lab / LIDS Synthesis Results
MIT AI Lab / LIDS Alternative 1: Gaussian Distribution: GMRF Chellappa and Chattergee
MIT AI Lab / LIDS Alternative 2: Statistical Wavelet Models Bergen and Heeger Donoho Simoncelli and Adelson
MIT AI Lab / LIDS Heeger and Bergen Texture Synthesis Model
MIT AI Lab / LIDS Heeger and Bergen Texture Synthesis Model
MIT AI Lab / LIDS Analysis Synthesis Sampling Procedure original texture patch synthesized texture patch
MIT AI Lab / LIDS Not quite right... Very similar to a Gaussian Model (i.e. no phase alignment)
MIT AI Lab / LIDS Wavelet Representation of Edges Wavelet Transform
MIT AI Lab / LIDS Pyramid Representation
MIT AI Lab / LIDS Conditional Distributions Wavelet Transform
MIT AI Lab / LIDS Analysis Synthesis Sampling Procedure synthesized texture patch original texture patch
MIT AI Lab / LIDS Multiresolution progression
MIT AI Lab / LIDS Joint feature occurrence across resolution
MIT AI Lab / LIDS Joint feature occurrence across resolution
MIT AI Lab / LIDS Texture Synthesis Results
MIT AI Lab / LIDS Models BMP2-C21 BTR70-C71 T72-132 • Models for target vehicles were generated from example images: • generated from vehicles with different numbers from the target vehicles • only 10 examples, evenly distributed in heading angle • measured at a depression angle of 17degrees (targets were at 15 degrees)
MIT AI Lab / LIDS BTR70-C71 Target vehicles • Five target vehicles were used. • Vehicles which differed from the target class were included as confusion targets. • There were roughly 200 images in each class. BMP2-9563 BMP2-9566 T72-812 T72-S7
MIT AI Lab / LIDS ZIL131 ZSU23 Confusion vehicles Six additional confusion vehicles were used as well. T62 2S1 BRDM2 D7
MIT AI Lab / LIDS BMP2-C21 BTR70-C71 T72-132 Flexible Histograms Template Matching De Bonet, Fisher and Viola
MIT AI Lab / LIDS Measuring Visual Structure : Flexible Histogram II Rtie-point B (x,y)= 8 Rtest parent structure
MIT AI Lab / LIDS Measuring Visual Structure : Flexible Histogram III Rlandmark B(,x,y)= 8 Rtie-point 2= (B-B’)2/B B’(x,y)= 3 Rtest
MIT AI Lab / LIDS Tie-point determination Multiresolution alignment search Multiresolution texture match: flexible histograms Registration pipeline
MIT AI Lab / LIDS Tie-point determination
MIT AI Lab / LIDS Tie-point examples Here, only vehicles provide distinct landmarks. When present, roads and buildings provide useful landmarks as well.
MIT AI Lab / LIDS Coarse to fine alignment Fine Coarse
MIT AI Lab / LIDS Example Registration
MIT AI Lab / LIDS Example Registration
MIT AI Lab / LIDS Example Registration