1 / 11

演習課題 1

演習課題 1. ( P. 137). 【 解答 】 クラウジウス-クラペイロンの式                                       を用いて計算する ここで、 T* = 85.8 [ ℃ ] = 359.0 [ K ]   のとき   p * = 1.3 [ kPa ] (= 1.3×10 3 [Pa]) T = 119.3 [ ℃ ] = 392.5 [ K ]   のとき   p = 5.3 [ kPa ] (= 5.3×10 3 [Pa]) 蒸発エンタルピー   Δ vap H

Download Presentation

演習課題 1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 演習課題 1 (P. 137)

  2. 【解答】 クラウジウス-クラペイロンの式                                       を用いて計算する ここで、 T* = 85.8 [℃] = 359.0 [K]   のとき  p* =1.3 [kPa] (= 1.3×103 [Pa]) T = 119.3 [℃] = 392.5 [K]   のとき  p =5.3 [kPa] (= 5.3×103 [Pa]) 蒸発エンタルピー  ΔvapH 第一式の両辺の自然対数をとり、変形すると、  χ=ln (p*/ p) = ln ( 1.3 / 5.3) = -1.405 [-] 第二式から、 ΔvapH=χ R / (1/T-1/ T*) (-1.405 [-])× (8.3145 [J K-1 mol-1]) = 1/392.5 [K] - 1/359.0 [K]                = 4.914 ×105 [J mol-1] = 49.1 [kJ mol-1]

  3. (b) 通常沸点 Tb T*= 119.3 [℃] = 392.5 [K]   のとき  p* =5.3 [kPa] (= 5.3×103 [Pa]) p = 101.3 [kPa] = ( 1.013×105 [Pa])  となる  Tb を求める χ= ln (5.3/101.3) = -2.950 [-], (a) より、ΔvapH=49.1×103 [J mol-1]  よって、      χ R 1/ Tb = + (1/ T) ΔvapH (-2.950[-])× (8.3145 [J K-1 mol-1]) 1 =+ (49.1×103 [J mol-1] ) (392.5 [K]) = (-0.050×10-3) +(2.548×10-3) = 2.049×10-3 [K-1] 従って、   Tb = (2.049×10-3 ) -1= 488.1 = 488 [K] = 215 [℃]

  4. (b) 通常沸点における蒸発エントロピー  ΔvapS(b) 通常沸点における蒸発エントロピー  ΔvapS ΔvapS=ΔvapH/ Tb = (49.1×103 [J mol-1]) / (488 [K]) 1 = 1.006 [J K-1 mol-1]

  5. 演習課題 1 (P. 175)

  6. N2 H2 N2 +H2 p [Pa] 1.01×105 1.01×105 1.01×105 n [mol] n/2 n/2 n T[K] 298 298 298 V [m3] 2.5 ×10-32.5 ×10-35.0 ×10-3 pV / R T n = {(1.01×105 [Pa])×(5.0×10-3 [m3])} / {(8.31 [J K-1 mol-1])×(298 [K])} = 0.203 [mol] xN2 = xH2 = 0.5 [-] ΔmixG = (0.203 [mol])×(8.31 [J K-1 mol-1])×((298 [K]) ×{0.5×ln (0.5) + 0.5×ln (0.5)} = -350[J] = -0.35 [kJ] 2 ΔmixS = ΔmixG / T = (-350 [J]) / (298 [K]) = -1.17 = -1.2 [J K-1]

  7. (P. 242)

  8.  初期量          A (N2O4): n B (NO2): 0  平衡時の解離度    α (= 18.46/100)  平衡時の量       A:n(1-α) B: 2nα  モル分率 (a) 平衡定数 (p = 1 [bar]) = 4×(0.18462)/(1-0.18462) = 0.14111 [-] 標準反応ギブズエネルギー ΔrGo=-RTlnK =-(8.3145 [J K-1 mol-1])×((298.15 [K])×ln (0.1411) =4854.2 [J mol-1] = 4.854 [kJ mol-1]

  9. (c) 100℃における平衡定数  25℃(T1)、100℃(T2)における平衡定数をそれぞれK1, K2とすると、 ln (K2/K1) = -ΔrHo / R × (1/T2-1/T1)       より、 lnK2= lnK1 -ΔrHo / R × (1/T2-1/T1) T1 = 298.15 [K] K1 = 01411 T2 = 373.15 [K] ΔrHo = 57.2×103 [J mol-1] R = 8.3145 [J K-1 mol-1 ] を代入して、 lnK2=2.678 6       したがって、  K2= 14.55[-]

  10. (P. 242)

  11. 2 A + B ⇄ 3 C + 2 DTotal 初期量 [mol] 1.002.000 1.004.00 BがX[mol]反応したとき  1.00-2X2.00-X 3X 1.00+2X 4.00+2X 平衡時の C の量が 0.90 [mol] でることから、X = 0.30 [mol] 平衡時の量 [mol] 0.40 1.70 0.901.60 4.60 (a) モル分率 [-] 0.087 0.370 0.196 0.348 1 xC3・xD2 (0.196)3・(0.348)2 3 (b) Kx= -------------------- = ---------------------------- = 0.325 =0.33 [-] xA2・xB(0.087)2・(0.370) (pC/po)3・(pD/po)2 xC3・xD2 p p (c) K= ------------------------------- = ---------------- ・(------)2= Kx (------)2 (pA/po)2・(pC/po)xA2・xBpopo = Kx= 0.33 [-] (p =1.00 [bar]) 8 (d) ΔrGo=-RTlnK=- 8.31×298× ln 0.325 = 2.77×103 [J mol-1]=2.8 [kJ mol-1]

More Related