1 / 19

Physics 2102 Lecture: 08 THU 11 FEB

Physics 2102 Jonathan Dowling. Physics 2102 Lecture: 08 THU 11 FEB. Capacitance I. 25.1–4. Capacitors and Capacitance. Capacitor: any two conductors, one with charge +Q , other with charge –Q. –Q. Potential DIFFERENCE between conductors = V. +Q.

Download Presentation

Physics 2102 Lecture: 08 THU 11 FEB

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Physics 2102 Jonathan Dowling Physics 2102 Lecture: 08 THU 11 FEB Capacitance I 25.1–4

  2. Capacitors and Capacitance Capacitor: any two conductors, one with charge +Q, other with charge –Q –Q Potential DIFFERENCE between conductors = V +Q Uses: storing and releasing electric charge/energy. Most electronic capacitors: micro-Farads (F), pico-Farads (pF) — 10–12 F New technology: compact 1 F capacitors Q = CV where C = capacitance Units of capacitance: Farad (F) = Coulomb/Volt

  3. +Q –Q Capacitance • Capacitance depends only on GEOMETRICAL factors and on the MATERIAL that separates the two conductors • e.g. Area of conductors, separation, whether the space in between is filled with air, plastic, etc. (We first focus on capacitors where gap is filled by AIR!)

  4. Electrolytic (1940-70) Electrolytic (new) Paper (1940-70) Capacitors Variable air, mica Ceramic (1930 on) Tantalum (1980 on) Mica (1930-50)

  5. Parallel Plate Capacitor We want capacitance: C = Q/V  E field between the plates: (Gauss’ Law) Area of each plate = A Separation = d charge/area =  = Q/A Relate E to potential difference V: +Q -Q What is the capacitance C ?

  6. Capacitance and Your iPhone!

  7. Parallel Plate Capacitor — Example • A huge parallel plate capacitor consists of two square metal plates of side 50 cm, separated by an air gap of 1 mm • What is the capacitance? C = 0A/d = (8.85 x 10–12 F/m)(0.25 m2)/(0.001 m) = 2.21 x 10–9 F (Very Small!!) Lesson: difficult to get large values of capacitance without special tricks!

  8. –Q +Q Isolated Parallel Plate Capacitor • A parallel plate capacitor of capacitance C is charged using a battery. • Charge = Q, potential difference = V. • Battery is then disconnected. • If the plate separation is INCREASED, does Potential DifferenceV: (a) Increase? (b) Remain the same? (c) Decrease? • Q is fixed! • C decreases (=0A/d) • V=Q/C; V increases.

  9. –Q +Q Parallel Plate Capacitor & Battery • A parallel plate capacitor of capacitance C is charged using a battery. • Charge = Q, potential difference = V. • Plate separation is INCREASED while battery remains connected. Does the Electric Field Inside: (a) Increase? (b) Remain the Same? (c) Decrease? • V is fixed by battery! • C decreases (=0A/d) • Q=CV; Q decreases • E = Q/0A decreases

  10. Spherical Capacitor What is the electric field inside the capacitor? (Gauss’ Law) Radius of outer plate = b Radius of inner plate = a Concentric spherical shells: Charge +Q on inner shell, –Q on outer shell Relate E to potential difference between the plates:

  11. Spherical Capacitor What is the capacitance? C = Q/V = Radius of outer plate = b Radius of inner plate = a Concentric spherical shells: Charge +Q on inner shell, –Q on outer shell Isolated sphere: let b >> a,

  12. Cylindrical Capacitor What is the electric field in between the plates? Gauss’ Law! Radius of outer plate = b Radius of inner plate = a Length of capacitor = L +Q on inner rod, –Q on outer shell Relate E to potential difference between the plates: cylindrical Gaussian surface of radius r

  13. Summary • Any two charged conductors form a capacitor. • Capacitance : C= Q/V • Simple Capacitors:Parallel plates: C = 0 A/dSpherical: C = 4e0 ab/(b-a)Cylindrical: C = 20 L/ln(b/a)]

  14. V = VAB = VA –VB C1 Q1 VA VB A B C2 Q2 VC VD D C V = VCD = VC –VD Ceq Qtotal V=V Capacitors in Parallel: V=Constant • An ISOLATED wire is an equipotential surface: V=Constant • Capacitors in parallel have SAME potential difference but NOT ALWAYS same charge! • VAB = VCD = V • Qtotal = Q1 + Q2 • CeqV = C1V + C2V • Ceq = C1 + C2 • Equivalent parallel capacitance = sum of capacitances PAR-V (Parallel V the Same)

  15. Q1 Q2 B C A C1 C2 Capacitors in Series: Q=Constant Isolated Wire: Q=Q1=Q2=Constant • Q1 = Q2 = Q = Constant • VAC = VAB + VBC SERI-Q (Series Q the Same) Q = Q1 = Q2 • SERIES: • Q is same for all capacitors • Total potential difference = sum of V Ceq

  16. C1 Q1 C2 Q2 Qeq Q1 Q2 Ceq C1 C2 Capacitors in parallel and in series • In parallel : • Cpar = C1 + C2 • Vpar= V1 = V2 • Qpar= Q1 + Q2 • In series : 1/Cser = 1/C1 + 1/C2 Vser= V1  + V2 Qser= Q1 = Q2

  17. Parallel: Circuit Splits Cleanly in Two (Constant V) C1=10 F C2=20 F C3=30 F 120V Example: Parallel or Series? • Qi = CiV • V = 120V = Constant • Q1 = (10 F)(120V) = 1200 C • Q2 = (20 F)(120V) = 2400 C • Q3 = (30 F)(120V) = 3600 C What is the charge on each capacitor? • Note that: • Total charge (7200 C) is shared between the 3 capacitors in the ratio C1:C2:C3— i.e. 1:2:3

  18. Series: Isolated Islands (Constant Q) Example: Parallel or Series C2=20mF C3=30mF C1=10mF What is the potential difference across each capacitor? • Q = CserV • Q is same for all capacitors • Combined Cser is given by: 120V • Ceq = 5.46 F (solve above equation) • Q = CeqV = (5.46 F)(120V) = 655 C • V1= Q/C1 = (655 C)/(10 F) = 65.5 V • V2= Q/C2 = (655 C)/(20 F) = 32.75 V • V3= Q/C3 = (655 C)/(30 F) = 21.8 V Note: 120V is shared in the ratio of INVERSE capacitances i.e. (1):(1/2):(1/3) (largest C gets smallest V)

  19. 10 F 10F 10F 10V 5F 5F 10V Example: Series or Parallel? Neither: Circuit Compilation Needed! In the circuit shown, what is the charge on the 10F capacitor? • The two 5F capacitors are in parallel • Replace by 10F • Then, we have two 10F capacitors in series • So, there is 5V across the 10 F capacitor of interest • Hence, Q = (10F )(5V) = 50C

More Related