260 likes | 432 Views
Another Modular Focal Plane: Part 1 – Sub-modules. Bruce C. Bigelow University of Michigan Department of Physics 5/17/04. Focal Plane Sub-modules. Motivations: install/remove single detectors from “front” of FP assemble detectors in modules of 3 x 3
E N D
Another Modular Focal Plane:Part 1 – Sub-modules Bruce C. Bigelow University of Michigan Department of Physics 5/17/04
Focal Plane Sub-modules Motivations: • install/remove single detectors from “front” of FP • assemble detectors in modules of 3 x 3 • simplify assembly, integration, and test • reduce part counts, simplify part design • simplify part fabrication • individual module thermal control (Vis vs. IR) • optimize materials for detector packages (CTE) • local, discrete control of focal plane surface height • minimize mechanical mass • minimize thermal time constants • minimize gravity deflections for ground testing • maximize resonant frequencies
Focal Plane Sub-modules Requirements: • final focal plane flatness: +/- 25 microns • support different optimal temperatures for Vis and IR • detector temperature stability +/- 1K • high stiffness – high first resonance
Focal Plane Sub-modules This talk: • sub-module designs • sub-module FEA
IR sub-module Rockwell H2RG package
IR sub-module Rockwell H2RG package with filter and frame
IR sub-module Rockwell H2RG package on moly MZT sub-plate
IR sub-module Rockwell H2RG 3 x 3 sub array
IR sub-module 3 x 3 sub array with flexure mounts
IR sub-module Sub-array with CRICs, flex circuits, connectors, local IR electronics (cold), sub-plate heater
IR sub-module Finished IR module with aperture mask
CCD sub-module Finished CCD module with aperture mask
Sub-module FEA FE Analyses: • Static analysis – gravity deflections • package mass modeled by doubling sub-plate density • moly packages and sub-plate, invar flexures • omit package cutouts, mounting holes, etc. • focal plane axis vertical and horizontal
Sub-module static FEA (meters) Sub-module, Gy, Y deflection = 1.1 microns
Sub-module static FEA (meters) Sub-module, Gy, Z deflection = +/- 0.3 microns
Sub-module static FEA (meters) Sub-module, Gz, max. Z deflection = 0.8 microns
Sub-module FEA FE Analyses: • Dynamic analysis - vibration modes and frequencies • package mass modeled by doubling sub-plate density • omit package cutouts, mounting holes, etc. • First resonance = 528 Hz for Invar/Invar case • First resonance = 630 Hz for Moly/Invar case
Sub-module dynamic FEA • Mode/Freq. • 630 • 630 • 654 • 1289 • 1376 Moly sub-plate and Invar flexures – first mode
Sub-module dynamic FEA • Mode/Freq. • 630 • 630 • 654 • 1289 • 1376 Moly MZT sub-plate and flexures – third mode
Sub-module thermal FEA • Thermal analysis – stress and distortion • omit package cutouts, mounting holes, etc. • omit package mass, stiffness • -160 K temperature shift • static, isothermal analysis • no effort yet to optimize flexure design • no effort yet to optimize stiffness of sub-plate
Sub-module thermal FEA Elements: Purple = Invar Red = Moly
Sub-module thermal FEA (Pascals) Purple = invar Red = moly Max stress at Invar/Moly joint (not realistic), 86.8 MPa (12,557 Psi), (Invar yield ~ 250 MPa)
Sub-module thermal FEA (meters) Purple = invar Red = moly Shrinkage of Invar vs. Moly in X direction, +/- 50 microns
Sub-module thermal FEA (meters) Purple = invar Red = moly Sub-plate displacement in Z direction – 15 microns Shrinkage of Invar vs. Moly in X direction
Sub-module thermal FEA (meters) Purple = invar Red = moly Sub-plate displacement in Z direction – 15 microns Distortion of mounting surface ~2 micron Shrinkage of Invar vs. Moly in X direction
FP sub-modules Conclusions: • sub-module designs for Vis and IR developed • detector packages • filters with mounts • sub-plates • sub-plate mounting flexures • electrical connectors, junction boxes • FEA demonstrates stiffness, high resonant freq. • FEA demonstrates acceptable thermal performance