1 / 10

探究新知

探究新知. [ 读教材 · 填要点 ]. 1 .含绝对值的不等式 | x | < a 与 | x | > a 的解法. { x | - a < x < a }. ∅. ∅. R. { x ∈ R| x ≠ 0}. { x | x > a 或 x <- a }. 2 . | ax + b |≤ c ( c > 0) 和 | ax + b |≥ c ( c > 0) 型不等式的解法 (1)| ax + b |≤ c ⇔ ; (2)| ax + b |≥ c ⇔. - c ≤ ax + b ≤ c. ax + b ≥ c 或 ax + b ≤ - c.

ilyssa
Download Presentation

探究新知

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 探究新知

  2. [读教材·填要点] 1.含绝对值的不等式|x|<a与|x|>a的解法 {x|-a<x<a} ∅ ∅ R {x∈R|x≠0} {x|x>a或x<-a} 2.|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法 (1)|ax+b|≤c⇔; (2)|ax+b|≥c⇔. -c≤ax+b≤c ax+b≥c或ax+b≤-c

  3. [例1] 解下列不等式: (1)|5x-2|≥8; (2)|3-2x|<9; (3)2|3x-1|-5>0;(4)|2x+5|>7+x; [思路点拨] 利用|x|>a及|x|<a(a>0)型不等式的解法求解.

  4. [例2] 解不等式|x+1|+|x-2|≥5. [例2]解不等式|x-3|-|x+1|<1. [思路点拨] 解该不等式,可采用三种方法: (1)利用绝对值的几何意义; (2)利用各绝对值的零点分段讨论; (3)构造函数,利用函数图像分析求解. 练.解不等式|2x-5|-|x+3|<2.

  5. |x-a|+|x-b|≥c、|x-a|-|x-b|≤c(c>0)型不等式 的三种解法:分区间(分类)讨论法、图像法和几何法. 分区间讨论的方法具有普遍性,但较麻烦;几何法和 图像法直观,但只适用于数据较简单的情况.

  6. 题型的拓展 例3:解不等式:|x-1| > |x-3| 练:|x+1| > |x-2| 解|x-a|<|x-b|、|x-a|>|x-b|(a≠b)型的不等式,可通过两边平方去绝对值符号的方法求解. 例4:解不等式:x2-|x|-6>0 练:2x2-7|x|+6<0

  7. 复习练习 ②x+|2x-1|<3.

  8. 3.不等式 有解的条件是( ) B

  9. [例3] 已知不等式|x+2|-|x+3|>m. (1)若不等式有解; (2)若不等式解集为R; (3)若不等式解集为∅,分别求出m的范围. 变式.把本例中的“>”改成“<”,即|x+2|-|x+3|<m时, 分别求出m的范围.

More Related