850 likes | 1.11k Views
数学实验. 李胜宏 mathsy@163.com 浙江大学数学系. 引言 数学实验是什么?. 著名数学家和数学教育家波利亚( Polya ) 曾精辟地指出 : “ 数学有两个侧面,一方面它是欧几里得式的严谨科学,从这个方面看,数学像是一门系统的演绎科学,但另一方面,创造过程中的数学,看起来却像是一门试验性的归纳科学.”. 美籍匈牙利数学家乔治 · 彼利亚( George Polya , 1 887 一 1985 ) 他一生发表 200 多篇论文和许多专著, 在数学的多个分支领域都做出了
E N D
数学实验 李胜宏 mathsy@163.com 浙江大学数学系
引言 数学实验是什么? 著名数学家和数学教育家波利亚(Polya )曾精辟地指出: “数学有两个侧面,一方面它是欧几里得式的严谨科学,从这个方面看,数学像是一门系统的演绎科学,但另一方面,创造过程中的数学,看起来却像是一门试验性的归纳科学.”
美籍匈牙利数学家乔治 · 彼利亚( George Polya , 1 887 一 1985 ) 他一生发表 200 多篇论文和许多专著, 在数学的多个分支领域都做出了 开创性的贡献.他也是一位极优秀的数学教育家, 十分重视培养学生思考 问题、分析问题的能力,强调创新及发现的重要性, 影响较大的数学教育 著作 《 怎样解题 》 、 《 数学的发现 》 、 《 数学与猜想 》 被誉为第二 次世界大战之后的经典之作.
数学研究是需要实验的. 数学家有时通过成百上千次的实验、观察、联系、归纳、类比、猜想才发现一个真理,最后用特有的严谨的数学语言表达出来,传给世人也留给后人.教科书上一般都把数学问题提出的背景、数学家的探索过程省略了. • 所谓“数学实验”,就是从问题(数学本身的问题或实际应用问题)出发,借助计算机,通过学习者亲自设计与动手操作,学习、探索和发现数学规律,或运用现有的数学知识分析和解决实际问题的过程, 换言之,数学实验就是学习者自主探索数学知识及其实际应用的实践过程.
问 题 • 设半径为1的圆的直径与圆周长的比为A; • 设半径为2的圆的直径与圆周长的比为B. • 请问A与B哪个大?
无穷的神秘气息:纪梵希的男用香水 π • 广告词是:Explore pi, explore the universe
圆周率π是一个家喻户晓的数学术语. Π值是多少和它是怎样算出来的? 这是不少人感兴趣的问题! 某电视节目中, 曾经有人提出这样一个问题: 谁最早发明了圆周率? 给出的正确答案是: 祖冲之.
从有文字记载的历史开始,这个数就引起了外行人和学者们的兴趣。在古代世界,实际上长期使用 π =3 这个数值。最早见有文字记载的基督教《圣经》中的章节 中,就有取圆周率为3, 这一段描述的事大约发生在公元前950年前后。而且,还把 3看作是 ”上帝” ”圣定”的。
中国直至东汉时期(25~220), 官方 还明文规定以圆周率3作计算的标准 数值. 后人称之为“古率”。 对π 的研究,在一定程度上反映 这个地区或时代的数学水平。德国数 学史家康托说:“历史上一个国家所算得 的圆周率的准确程度, 可以作为衡量这个 国家当时数学发展水平的指标。”
回顾人类对 π 的认识过程,反映 了数学和计算技术发展情形的一个 侧面. 直到19世纪初,求圆周率的值应 该说是数学中的头号难题。为了求 出它的尽量准确的近似值, 几千年 来作为数学家们的奋斗目标,古今 中外一代一代的数学家为此献出了 自己的智慧和劳动。
为求得圆周率的值,人类走过了漫长而曲折的道路,它的历史是饶有趣味的,这一计算历程可分为几个阶段。为求得圆周率的值,人类走过了漫长而曲折的道路,它的历史是饶有趣味的,这一计算历程可分为几个阶段。 实验时期 通过实验对 π 值进行估算,这是计算 π 的的第一阶段。这种对 π 值的估算基本上都是以观察或实验为
根据,是基于对一个圆的周长和直径的实际测量而得出的。根据,是基于对一个圆的周长和直径的实际测量而得出的。 在我国刘徽之前“圆径一而周三”曾广泛流传。我国第一部《周髀算经》中,就记载有圆“周三径一”这一结论. 在我国,木工师傅有两句从古流传下来的口诀, 叫做:
早期的人们还使用了其它的粗糙方法。如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值。或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率的稍好些的值。早期的人们还使用了其它的粗糙方法。如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值。或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率的稍好些的值。
如古埃及人应用了约四千年的 4(8/9)2 = 3.1605。在印度,公元前六世纪,曾取π= √10 = 3.162。在我国东、西汉之交,新朝王莽令刘歆制造量的容器――律嘉量斛。刘歆在制造标准容器的过程中就需要用到圆周率的值。为此,他大约也是通过做实验,得到一些关于圆周率的并不划一的近似值。
现在根据铭文推算,其计算值分别 取为3.1547,3.1992,3.1498,3.2031 比径一周三的古率已有所进步。人 类的这种探索的结果,当主要估计 圆田面积时,对生产没有太大影响, 但以此来制造器皿或其它计算就不 合适了。
几何法时期 凭直观推测或实物度量,来计算 π 值的实验方法所得到的结果是相当粗略的。真正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。
他是科学地研究这一常数的第一个 人,是他首先提出了一种能够借助 数学过程而不是通过测量的、能够 把 π 的值精确到任意精度的方法。 由此,开创了圆周率计算的第二阶 段。
圆周长大于内接正四边形而小于 外切正四边形,因此 2√2 < π < 4。当然,这是一 个差劲透顶的例子。据说阿基米 德用到了正96边形才算出他的值域。
阿基米德求圆周率的更精确近 似值的方法,体现在他的一篇论 文《圆的测定》之中。在这篇论 文中,阿基米德第一次创用上、下 界来确定 π 的近似值,他用几何 方法证明了“圆周长与圆直径之比 小于 3+(1/7) 而大于 3 + (10/71) ”,
他还提供了误差的估计. 重要的是,这种方法从理论上而言,能够求得圆周率的更准确的值。到公元150年左右,希腊天文学家托勒密得出 π =3.1416,取得了自阿基米德以来的巨大进步。 在我国,首先是由数学家刘徽得出较精确的圆周率。
公元263年前后,刘徽提出著名的 割圆术,得出π =3.14,通常称为 “徽率”,他指出这是不足近似值。虽 然他提出割圆术的时间比阿基米德 晚一些,但其方法确有着较阿基米 德方法更美妙之处。 割圆术仅用内接正多边形就确定出 了圆周率的上、下界,比阿基米德用 内接同时又用外切正多边形简捷得多.
另外,有人认为在割圆术中刘徽提 供了一种绝妙的精加工办法,以致 于他将割到192边形的几个粗糙的 近似值通过简单的加权平均,竟然 获得具有4位有效数字的圆周率 π =3927/1250 =3.1416。而这一 结果,正如刘徽本人指出的,如果 通过割圆计算得出这个结果,需要 割到3072边形。这种精加工方法的 效果是奇妙的。
这一神奇的精加工技术是割圆术中 最为精彩的部分,令人遗憾的是, 由 于人们对它缺乏理解而被长期埋没了。 恐怕大家更加熟悉的是祖冲之关于 圆周率的两大贡献.
其一是求得圆周率3.1415926 < π < 3.1415927 • 其二是,得到 π 的两个近似分数即: 约率为22/7;密率为355/113。
对此,《隋书·律历志》有如下记载: “宋末,南徐州从事祖冲之更开密法。 以圆径一亿为丈,圆周盈数三丈一尺 四寸一分五厘九毫二秒七忽,朒数三 丈一尺四寸一分五厘九毫二秒六忽, 正数在盈朒二限之间。密率:圆径一 百一十三,圆周三百五十五。约率, 圆径七,周二十二。”
他算出的 π 的8位可靠数字,不但 在当时是最精密的圆周率,而且保持 世界记录九百多年。以致于有数学史 家提议将这一结果命名为“祖率”。 中国发行的祖冲之纪念邮票
这一结果是如何获得的呢?追根溯源,正是基于对刘徽割圆术的继承这一结果是如何获得的呢?追根溯源,正是基于对刘徽割圆术的继承 与发展,祖冲之才能得到这一非凡的成果。因而当我们称颂祖冲之的功绩时, 不要忘记他的成就的取得是因为他站在数学伟人刘徽的肩膀上的缘故。
请大家想想: 只是单纯地通过计算圆内接多边形边长,为了得到这样精确度的值, 需要算到圆 内接多少正边形?
后人曾推算若要单纯地通过计算圆内接多边形边长的话,得到这一结果,需要算到圆内接正12288边形,才能得到这样精确度的值。祖冲之是否还使用了其它的巧妙办法来简化计算呢?后人曾推算若要单纯地通过计算圆内接多边形边长的话,得到这一结果,需要算到圆内接正12288边形,才能得到这样精确度的值。祖冲之是否还使用了其它的巧妙办法来简化计算呢?
非常遗憾, 这已经不得而知,因为记载其研究成果的著作《缀术》早已失传了。 • 这在中国数学发展史上是一件极令人 痛惜的事。
祖冲之的这一研究成果享有世界声誉:巴黎 “发现宫”科学博物馆的墙壁上著文介绍了祖 冲之求得的圆周率, 莫斯科大学礼堂的走廊 上镶嵌有祖冲之的大理石塑像,月球上有以 祖冲之命名的环形山…… 对于祖冲之的关于圆周率的第二点贡献, 即 他选用两个简单的分数尤其是用密率来近似 地表示 π 这一点,通常人们不会太注意。然 而,实际上,后者在数学上有更重要的意义。
密率与 π 的近似程度很好,形式上也很简单,并且很优美,只用 到了数字1、3、5。数学史家梁宗 巨教授验证出:分母小于16604的 一切分数中, 没有比密率更接近π 的分数。在国外,祖冲之死后一千多年,西方人才获得这一结果。 可见,密率的提出是一件很不简单 的事情。人们自然要追究他是采用 什么办法得到这一结果的呢?
他是用什么办法把圆周率从小数表 示的近似值化为近似分数的呢?这 一问题历来为数学史家所关注。虽 然由于文献的失传,祖冲之的求法 已不为人知。后人对此进行了各种 猜测。 让我们先看看国外历史上的工作, 希望能够提供出一些信息。 1573年,德国人奥托得出这一结 果。
他是用阿基米德成果22/7与托勒 密的结果377/120用类似于加成法 “合成”的:(377-22) / (120-7) = 355/113。 1585年,荷兰人安托尼兹用阿基米 德的方法先求得:333/106 <π < 377/120,用两者作为 π 的母近 似值,分子、分母各取平均,通过加 成法获得结果: 3 ((15+17)/(106+120) = 355/113。
在日本,十七世纪关孝和重要著作 《括要算法》卷四中求圆周率时创 立零约术,其实质就是用加成法来 求近似分数的方法。他以3、4作为 母近似值,连续加成六次得到祖冲 之约率,加成一百十二次得到密率. 其学生对这种按部就班的笨办法作了改进,提出从相邻的不足、过剩近似值就近加成的办法,(实际上就是我们前面已经提到的加成法)
这样从3、4出发,六次加成到约 率,第七次出现25/8,就近与 其紧邻的22/7加成, 得47/15, 依次类推,只要加成23次就得到 密率。 钱宗琮先生在《中国算学史》(1931年)中提出祖冲之采用了 我们前面提到的由何承天首创的 “调日法”或称加权加成法。
他设想了祖冲之求密率的过程: 以徽率157/50,约率22/7为母 近似值,并计算加成权数x=9, 于是 (157+22X9)/ (50+7x9)= 355/113, 一举得到密率。钱先生说:“冲之 在承天后,用其术以造密率,亦意 中事耳。” 另一种推测是:使用连分数法。
由于求二自然数的最大公约数的 更相减损术远在《九章算术》成书 时代已流行,所以借助这一工具求 近似分数应该是比较自然的。于是 有人提出祖冲之可能是在求得盈 二数之后,再使用这个工具, 将3.14159265表示成连分数, 得到其渐近分数: 3,22/7,333/106,355/113, 102573/32650…
最后,取精确度很高但分子分母 都较小的355/113作为圆周率的近 似值。至于上面圆周率渐近分数的具 体求法,这里略掉了。 你不妨利用 我们前面介绍的方法自己求求看. 英 国李约瑟博士持这一观点。他在《中 国科学技术史》 卷三第19章几何编 中论祖冲之的密率说: “密率的分数是一个连分数渐近数, 因此是一个非凡的成就。”
再回过头来看一下 国外所取得的成果。
1150年,印度数学家婆什迦罗第二计算出 π= 3927/1250 = 3.1416。 • 1424年,中亚细亚地区的天文学家、数学家卡西著《圆周论》,计算了3×228,805,306,368边内接与外切正多边形的周长,求出 π 值,他的结果是:π=3.14159265358979325 • 有十七位准确数字。这是国外第一次打破祖冲之的记录。
16世纪的法国数学家韦达利用阿基米德的方法计算 π 近似值,用 6×216正边形,推算出精确到9位小数的 π 值。 • 他所采用的仍然是阿基米德的方法,但韦达却拥有比阿基米德更先进的工具:十进位置制。 • 17世纪初,德国人鲁道夫用了几乎一生的时间钻研这个问题。
他也将新的十进制与早的阿基米德方法结合起 • 来,但他不是从正六边形开始并将其边数翻番的, • 他是从正方形开始的, 一直推导出了有262条边 • 的正多边形, 约4,610,000,000,000,000,000边 • 形!这样,算出小数35位。 • 为了记念他的这一非凡成果,在德国圆周率 π 被 • 称为“鲁道夫数”。但是,用几何方法求其值,计算 • 量很大,这样算下去,数学家一生也改进不了多 • 少。到鲁道夫可以说已经登峰造极,古典方法已引 • 导数学家们走得很远,再向前推进,必须在方法上 • 有所突破。
17世纪出现了数学分析,这锐利的工具使得许多初等数学束手无策的问题迎刃而解。 π 的计算历史也随之进入了一个新的阶段。 再看几个有趣的例子