1.06k likes | 1.3k Views
PhD Defense. Local Reverse Time Migration with VSP Green’s Functions. Xiang Xiao UTAM, Univ. of Utah May 1, 2008. 99 pages. Outline. Introduction and overview SSP VSP SWP interferometric transform Local reverse time migration: horizontal reflector imaging
E N D
PhD Defense Local Reverse Time Migration with VSP Green’s Functions Xiang Xiao UTAM, Univ. of Utah May 1, 2008 99 pages
Outline • Introduction and overview • SSP VSP SWP interferometric transform • Local reverse time migration: horizontal reflector imaging • Local reverse time migration: salt flank imaging with transmitted P-to-S waves • Summary Overview Local RTM Local RTM PS Summary SSPVSP
Outline • Introduction and overview • SSP VSP SWP interferometric transform • Local reverse time migration: horizontal reflector imaging • Local reverse time migration: salt flank imaging with transmitted P-to-S waves • Summary Overview Local RTM Local RTM PS Summary SSPVSP
Model Data Time Depth Offset Offset Forward modelling r(x) D(g|s) Migration Image Inverse Migration m(x) Low subsalt resolution, Defocusing! Overview Local RTM Local RTM PS Summary SSPVSP
Model- based Model- based * m(x) ~ ~ G(x|s) G(x|g)* ds s Subsalt Imaging D(g|s)dg g s D(g|s) g G(x|s) G(x|g) x Overview Local RTM Local RTM PS Summary SSPVSP
Forward direct Backward reflection m(x) ~ ~ G(x|s) G(x|g)* D(g|s)dg g Subsalt Imaging * ds s s Errors in the overburden and salt body velocity model D(g|s) g G(x|s) G(x|g) x Defocusing Overview Local RTM Local RTM PS Summary SSPVSP
Data- based G(x|s) Interferometric Imaging Model- based * m(x) ~ ~ G(x|g)* D(g|s)dg ds s g s g G(x|s) G(x|g) x Overview Local RTM Local RTM PS Summary SSPVSP
Local Reverse Time Migration Backward Direct wave G(x|s)= G(x|g’)* D(g’|s)dg’ g’ Local VSP Green’s function s g G(x|s) G(x|g) x g’ Overview Local RTM Local RTM PS Summary SSPVSP
Backward approx Backward reflection m(x) ~ ~ G(x|s) G(x|g)* D(g|s)dg g Local Reverse Time Migration * ds s s s g G(x|s) G(x|g) x g’ Overview Local RTM Local RTM PS Summary SSPVSP
Outline • Introduction and overview • SSP VSP SWP interferometric transform • Local reverse time migration: horizontal reflector imaging • Local reverse time migration: salt flank imaging by transmitted P-to-S waves • Summary Overview Local RTM Local RTM PS Summary SSPVSP
Outline • SSP VSP SWP interferometric transform • Motivation • Theory • Numerical Tests • SEG/EAGE salt model • Double datuming • Conclusions Overview Local RTM Local RTM PS Summary SSPVSP
I. Why we need more VSP? SSP VSP • Surface related statics • Twice Once Seabed • Overburden velocity error • Twice Once • Raypath Salt • Longer Shorter • Attenuation • More Less • Frequency Target • Lower Higher • Resolution • Lower Higher Motivation SSPVSP Theory Numerical Tests Conclusions
VSP RVSP SSP x B x B x B S2 S2 S2 A A A S1 S1 S1 RVSP VSP SSP G(B|A) ~ G(A|x)* G(B|x) How to get more VSP? dx ~ S2 Motivation SSPVSP Theory Numerical Tests Conclusions
3D Application 3DSSP 3D VSP Low fold Naturally datuming ! High fold ! SSP + VSP RVSP! 3D RVSP Motivation SSPVSP Theory Numerical Tests Conclusions
Receiver coverage Shot coverage S Seabed Salt SSP/RVSP aperture Target X g VSP aperture Motivation SSPVSP Theory Numerical Tests Conclusions
SSP, VSP Well log High folds ! Salt SSP + VSP RVSP! 3D RVSP Use it, or lost it… Better Geologic interpretation ! Better image under the salt ! Motivation SSPVSP Theory Numerical Tests Conclusions
What is the benefit ? SSP + VSP RVSP • Sources are closer to the target; • Higher fold virtual RVSP data are obtained; • No velocity model is needed; • Multi-arrival are considered; Salt Motivation SSPVSP Theory Numerical Tests Conclusions
VSP VSP Virtual Source Gather s s s g’ g’ g’ g g g VSP VSP SWP G(g’|s)* G(g|s) G(g|g’) ~ How to skip overburden? No velocity model is needed ! dx ~ S Motivation SSPVSP Theory Numerical Tests Conclusions
Virtual Source Gather s g’ g Application Application of VSPSWP transform: • Salt flank imaging • P and S wave checkshot • Sediment imaging • Multiple/teleseismic imaging • 4D Reservoir monitoring • Shear wave splitting and crack orientation • Seismic while drilling • …… Motivation SSPVSP Theory Numerical Tests Conclusions
Outline • SSP VSP SWP interferometric transform • Motivation • Theory • Numerical Tests • SEG/EAGE model • Double datuming • Conclusions Overview Local RTM Local RTM PS Summary SSPVSP
SEG/EAGE Salt Model P-wave velocity model Velocity (m/s) 0 4500 Depth (m) 3600 1500 -7850 Offset (m) 7850 Motivation SSPVSP Theory Numerical Tests Conclusions
P-wave velocity model Velocity (m/s) 0 4500 Depth (m) 3600 1500 -7850 Offset (m) 7850 SSP Data Geometry… SSP Motivation SSPVSP Theory Numerical Tests Conclusions
Synthetic SSP CSG 0 Time (s) 6 -2000 2000 Offset (m) Data Motivation SSPVSP Theory Numerical Tests Conclusions
P-wave velocity model Velocity (m/s) 0 4500 Depth (m) 3600 1500 -7850 Offset (m) 7850 VSP Geometry… Motivation SSPVSP Theory Numerical Tests Conclusions
Synthetic SSP CSG Synthetic VSP CRG 0 0 Time (s) 6 6 -7850 7850 -7850 7850 Offset (m) Offset (m) Data Time (s) Motivation SSPVSP Theory Numerical Tests Conclusions
Synthetic RVSP CSG 0 Time (s) 6 Redatumed RVSP 0 Traces comparisons Zoom area Amplitude Time (s) 2 Time (s) 6 6 -7850 7850 Offset (m) 1.4 kmComparison
Zoom View of Traces Direct waves are cut Redatumed RVSP trace poor data folds Normalized Amplitude 3 Time (s) 5.5 Motivation SSPVSP Theory Numerical Tests Conclusions
P-wave velocity model Velocity (m/s) 0 4500 Depth (m) 3600 1500 -7850 Offset (m) 7850 Another Datuming Results Motivation SSPVSP Theory Numerical Tests Conclusions
Synthetic RVSP CSG 0 Time (s) 6 Redatumed RVSP 0 Time (s) 6 -2000 2000 Offset (m) 2.4 kmComparison Traces comparisons Amplitude 2 Time (s) 6
Zoom view Direct waves are cut Redatumed RVSP trace poor data folds Normalized Amplitude 2.5 6 Time (s) Motivation SSPVSP Theory Numerical Tests Conclusions
SEG/EAGE Salt Model P-wave velocity model Velocity (m/s) 0 4500 Depth (m) 3600 1500 -7850 Offset (m) 7850 Motivation SSPVSP Theory Numerical Tests Conclusions
Shot 320 SSP primary WEM 20 Hz 1.5 Depth (km) 3.5 Shot 320 RVSP WEM 20 Hz 1.5 Depth (km) 3.5 -4 4 Offset (km)
33 shots SSP WEM 20 Hz SEG/EAGE salt model 0 Depth (km) 3.6 33shots VSP WEM 20 Hz 0 Depth (km) 3.6 -4 4 Offset (km) 33 RVSP+VSP WEM 20 Hz -4 4 Offset (km)
s g s g s’ s’ s’ SSPVSPSWP Transform g g g’ s’ g’ s’ g’ Motivation SSPVSP Theory Numerical Tests Conclusions
1% error in migration model 645 shots SSP WEM 0 Depth (km) 3.6 2% error in migration model 3% error in migration model 0 Depth (km) 3.6 -8 8 -8 8 Offset (km) Offset (km)
1% error in migration model 33 shots VSP WEM 0 Depth (km) 3.6 2% error in migration model 3% error in migration model 0 Depth (km) 3.6 -8 8 -8 8 Offset (km) Offset (km)
645 shots SSP primary WEM 20 Hz 0 Depth (km) 3.5 Shot 320 BSSP WEM 20 Hz 1.5 Depth (km) 3.5 -8 8 Offset (km)
645 shots SSP primary WEM 20 Hz 0 Depth (km) 3.5 Shot 320 BSSP WEM 20 Hz 1.5 Depth (km) 3.5 -8 8 Offset (km)
Conclusions • Natural datuming, no velocity model is needed ! • Higher fold virtual VSP data are obtained ! • Source are closer to the target, less approximation. • Better resolution. Motivation SSPVSP Theory Numerical Tests Conclusions
Outline • Introduction and overview • SSP VSP SWP interferometric transform • Local reverse time migration: horizontal reflector imaging • Local reverse time migration: salt flank imaging with transmitted P-to-S waves • Summary Overview Local RTM Local RTM PS Summary SSPVSP
Outline • Local reverse time migration: horizontal reflector imaging • Motivation • Theory • Numerical Tests • Sigsbee VSP Data Set • GOM VSP Data Set • Conclusions Motivation Local RTM Theory Numerical Tests Conclusions
VSP Forward Modeling s VSP data g D(g|s) x Motivation Local RTM Theory Numerical Tests Conclusions
Reverse Time Migration s VSP data g D(g|s) x Motivation Local RTM Theory Numerical Tests Conclusions
Forward direct Backward data G(x|s) G(x|g)* D(g|s)dg g Reverse Time Migration * m(x) ~ ~ ds s s G(x|g) G(x|s) g Backward D(g|s) Forward direct x Motivation Local RTM Theory Numerical Tests Conclusions
Reverse Time Migration (RTM) • Forward direct: • Salt velocity model is required, but hard to build. 2) Errors due to imperfect velocity models. 3) Need to estimate statics, anisotropy, etc. s G(x|g) G(x|s) g Backward D(g,s) Forward direct x Motivation Local RTM Theory Numerical Tests Conclusions
VSPSWP Interferometry s g x Migrate virtual source gather D(g|g’) g’ Limitations 1) s and x are at different sides of the well 2) Image near vertical structures Motivation Local RTM Theory Numerical Tests Conclusions
Outline • Local reverse time migration: horizontal reflector imaging • Motivation • Theory • Numerical Tests • Sigsbee VSP Data Set • GOM VSP Data Set • Conclusions Motivation Local RTM Theory Numerical Tests Conclusions
Key Idea of Local RTM (a) VSP data: P(g|s)=T(g|s)+R(g|s) s g Reflection R(g|s) x Transmission T(g|s) Motivation Local RTM Theory Numerical Tests Conclusions
(a) VSP data: P(g|s)=T(g|s)+R(g|s) s g R(g|s) x (b) Backward reflection (c) Backward transmission T(g|s) s R(x|s)= G(x|g)*R(g|s) T(x|s)= G(x|g)*T(g|s) g g g R(g|s) x x x T(g|s) R(g|s) (d) Crosscorrelation m(x)= R(x|s)*T(x|s) g s g Key Idea of Local RTM s Local VSP Green’s function Motivation Local RTM Theory Numerical Tests Conclusions