1 / 24

CPSC 668 Distributed Algorithms and Systems

CPSC 668 Distributed Algorithms and Systems. Fall 2006 Prof. Jennifer Welch. Processor Failures in Message Passing. Crash: at some point the processor stops taking steps at the processor's final step, it might succeed in sending only a subset of the messages it is supposed to send

inari
Download Presentation

CPSC 668 Distributed Algorithms and Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CPSC 668Distributed Algorithms and Systems Fall 2006 Prof. Jennifer Welch Set 9: Fault Tolerant Consensus

  2. Processor Failures in Message Passing • Crash: at some point the processor stops taking steps • at the processor's final step, it might succeed in sending only a subset of the messages it is supposed to send • Byzantine: processor changes state arbitrarily and sends messages with arbitrary content Set 9: Fault Tolerant Consensus

  3. Consensus Problem • Every processor has an input. • Termination: Eventually every nonfaulty processor must decide on a value. • Agreement: All decisions by nonfaulty processors must be the same. • Validity: If all inputs are the same, then the decision of a nonfaulty processor must equal the common input. Set 9: Fault Tolerant Consensus

  4. Overview of Consensus Results • Let f be the maximum number of faulty processors. • Tight bounds for message passing: Set 9: Fault Tolerant Consensus

  5. Overview of Consensus Results • Impossible in asynchronous case. • Even if we only want to tolerate a single crash failure. • True both for message passing and shared read-write memory. Set 9: Fault Tolerant Consensus

  6. Modeling Processor Failures • Modify failure-free definitions of admissible execution to accommodate crash failures: • All but a set of at most f processors (the faulty ones) taken an infinite number of steps. • In synchronous case: once a faulty processor fails to take a step in a round, it takes no more steps. • In a faulty processor's last step, an arbitrary subset of the processor's outgoing messages make it into the channels. Set 9: Fault Tolerant Consensus

  7. Modeling Processor Failures • Modify failure-free definitions of admissible execution to accommodate Byzantine failures: • A set of at most f processors (the faulty ones) can send messages with arbitrary content and change state arbitrarily (i.e., not according to their transition functions). Set 9: Fault Tolerant Consensus

  8. Consensus Algorithm for Crash Failures Code for each processor: v := my input at each round 1 through f+1: if I have not yet sent v then send v to all wait to receive messages for this round v := minimum among all received values and current value of v if this is round f+1 then decide on v Set 9: Fault Tolerant Consensus

  9. Correctness of Crash Consensus Algorithm Termination: By the code, finish in round f+1. Validity: Holds since processors do not introduce spurious messages: if all inputs are the same, then that is the only value ever in circulation. Set 9: Fault Tolerant Consensus

  10. round f round f+1 round 1 round 2 q1 q2 qf qf+1 pj pi Correctness of Crash Consensus Algorithm Agreement: • Suppose in contradiction pj decides on a smaller value, x, than does pi. • Then x was hidden from pi by a chain of faulty processors: • There are f + 1 faulty processors in this chain, a contradiction. Set 9: Fault Tolerant Consensus

  11. Performance of Crash Consensus Algorithm • Number of processors n > f • f + 1 rounds • n2•|V| messages, each of size log|V| bits, where V is the input set. Set 9: Fault Tolerant Consensus

  12. Lower Bound on Rounds Assumptions: • n > f + 1 • every processor is supposed to send a message to every other processor in every round • Input set is {0,1} Set 9: Fault Tolerant Consensus

  13. Failure-Sparse Executions • Bad behavior for the crash algorithm was when there was one crash per round. • This is bad in general. • A failure-sparse execution has at most one crash per round. • We will deal exclusively with failure-sparse executions in this proof. Set 9: Fault Tolerant Consensus

  14. Valence of a Configuration • The valence of a configuration C is the set of all values decided by a nonfaulty processor in some configuration reachable from C by an admissible (failure-sparse) execution. • Bivalent: set contains 0 and 1. • Univalent: set contains only one value • 0-valent or 1-valent Set 9: Fault Tolerant Consensus

  15. Valence of a Configuration 0/1 C 0 0/1 1 0/1 D E F G <= decisions 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0/1 : bivalent 1 : 1-valent 0 : 0-valent Set 9: Fault Tolerant Consensus

  16. round 1 round 2 round f - 2 round f - 1 round f … show we can keep a n.f. proc. from deciding in round f show  bivalent initial config. show we can keep things bivalent through round f - 1 Statement of Round Lower Bound Theorem (5.3): Any crash-resilient consensus algorithm requires at least f + 1 rounds in the worst case. Proof Strategy: Set 9: Fault Tolerant Consensus

  17. by validity condition There exist 2 neighboring configs. with different valencies Existence of Bivalent Initial Config. • Suppose in contradiction all initial configurations are univalent. Set 9: Fault Tolerant Consensus

  18. I0 pi fails initially, no other failures. By termination, eventually rest decide. all but pi decide 0  I1 This execution looks the same as the one above to all the processors except pi. all but pi decide 0 Existence of Bivalent Initial Config. • Let • I0 be a 0-valent initial config • I1 be a 1-valent initial config • s.t. they differ only in pi 's input Contradiction! Set 9: Fault Tolerant Consensus

  19. Keeping Things Bivalent • Let ' be a (failure-sparse) k-1 round execution ending in a bivalent config. • for k - 1 < f - 1 • Show there is a one-round (f-s) extension  of ' ending in a bivalent config. • so  has k < f rounds • Suppose in contradiction every one-round (f-s) extension of ' is univalent. Set 9: Fault Tolerant Consensus

  20. failure-free round k 1-val pi fails to send to  1-val pi fails to send to q1,…,qj 0-val pi fails to send to q1,…,qj+1 0-val pi fails to send to q1,…,qm Keeping Things Bivalent … bi- val ' rounds 1 to k-1 … pi crashes Set 9: Fault Tolerant Consensus

  21. pi fails to send to q1,…,qj qj+1fails in rd. k+1; no other failures at most f failures  pi fails to send to q1,…,qj+1 Keeping Things Bivalent 1-val round k n.f. decide 1 ' rounds 1 to k-1 0-val n.f. decide 1 Contradiction! Set 9: Fault Tolerant Consensus

  22. Cannot Decide in Round f • We've shown there is an f - 1 round (failure-sparse) execution, call it , ending in a bivalent configuration. • Extending this execution to f rounds might not preserve bivalence. • However, we can keep a processor from explicitly deciding in round f, thus requiring at least one more round (f+1). Set 9: Fault Tolerant Consensus

  23. Cannot Decide in Round f Case 1: There is a 1-round (f-s) extension of  ending in a bivalent config. Then we are done. Case 2: All 1-round (f-s) extensions of  end in univalent configs. Set 9: Fault Tolerant Consensus

  24. pk either undecided or decided 1 1-val round f failure free look same to pk pk and pj not both decided pi fails to send to nf pj , sends to another nf pk look same to pj 0-val pj either undecided or decided 0 Cannot Decide in Round f pi sends to pj and pk bi- val.  rounds 1 to f-1 at least 2 nf procs pi fails to send to nf pj pi might send to pk Set 9: Fault Tolerant Consensus

More Related