1 / 30

Internet search engines: Fluctuations in document accessibility

Internet search engines: Fluctuations in document accessibility. Wouter Mettrop CWI, Amsterdam, The Netherlands Paul Nieuwenhuysen Vrije Universiteit Brussel, and Universitaire Instelling Antwerpen, Belgium http://www.cwi.nl/cwi/projects/IRT

indra
Download Presentation

Internet search engines: Fluctuations in document accessibility

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Internet search engines: Fluctuations in document accessibility • Wouter Mettrop CWI, Amsterdam, The Netherlands • Paul Nieuwenhuysen Vrije Universiteit Brussel, and Universitaire Instelling Antwerpen, Belgium http://www.cwi.nl/cwi/projects/IRT Presented at NOM 2000New York Hilton May 16-18, 2000

  2. WWW: growing number of WWW servers WWW

  3. Internet based information sources: how many? how much? In 2000: • about 1 billion = 1000 million unique URLs in the total Internet • about 10 terabyte (= 10 000 gigabyte) of text data

  4. Internet information retrieval systems in 2000 • Several types of systems exist to retrieve information: • Directories of selected sources categorised by subject, made by humans, mainly for browsing. • Search systems, based on databases with machine made indexes, for word-based searching! • “Meta-search” or “multi-threaded” search systems. • We have studied and compared several well-known international (and a few national) word-based Internet search engines.

  5. Internet information retrieval systems: evaluation criteria • Many aspects/criteria can be considered in the evaluation of an Internet search engine, including • coverage of documents present on WWW (studies exist); • number of elements of a document, that are indexed to make them usable for retrieval = “depth of indexing”;… • We started to study the depth of indexing and we were soon confronted with the fluctuations in the performance that do exist. • We think that these fluctations are another important aspect of performance.

  6. Internet information retrieval systems: our research group The following persons have been involved in the research: • Louise Beijer (Hogeschool van Amsterdam, The Netherlands) • Hans de Bruin (Unilever Research Laboratorium, Vlaardingen, The Netherlands) • Hans de Man (JdM Documentaire Informatie, Vlaardingen, The Netherlands) • Rudy Dokter (PNO Consultants, Hengelo, The Netherlands) • Marten Hofstede ( Rijksuniversiteit Leiden, The Netherlands) • Wouter Mettrop (CWI, Amsterdam, The Netherlands) • Paul Nieuwenhuysen (Vrije Universiteit Brussel, Belgium) • Eric Sieverts (Hogeschool van Amsterdam, and RUU, The Netherlands) • Hanneke Smulders (Infomare, Terneuzen, The Netherlands) • Hans van der Laan (Consultant, Leiderdorp, The Netherlands) • Ditmer Weertman (ADLIB, Utrecht, The Netherlands)

  7. Internet search engines: research on indexing functionality • Our method to assess the indexing functionality of search engines: • A “rich” test document with many element types has been created • Identical test documents were placed at 8 sites in 2 countries • A procedure was set up to assess retrieval • in an automatic way • with regular intervals

  8. Number of our test documents that were retrieved

  9. Internet search engines : reachability • 14 528 queries were sent to 13 search engines. • Search engines were 721 times unreachable. • The percentage of unreachability varies from nearly 0% to nearly 15%. • The studied search engines were reachable for 95% of the queries.

  10. title tag META-tags: keywords, description and author comment tag ALT tag text/URL of a link to a document H3 tag table header text of: an internal link, a reference anchor, a link to a sound file name of a sound file (au/wav/aiff/ra) text of a link to an image name of an image file (gif or jpg; inline or linked to) name of a Java applet (with or without extension class) terms after the first 100 lines in a document (200/…/700) the URL of a document Internet search engines: elements of test document studied

  11. Number of the studied document elements that were indexed

  12. Search engine indexing functionality: conclusions • Considerable differences among search engines exist in their depth of indexing! • Not “all of the static web” is indexed. • Not each of our test documents/pages. • Not all HTML elements of our test document/page. • Some of the studied search engines showed changes in the indexing policy during the experiment fluctuations…

  13. Internet search engines: fluctuations - definition • A fluctuation appears when the result set of an observation - i.e. • one query or • set of queries misses documents with respect to a frame of reference - i.e. • other observations and • knowledge about Web reality

  14. Internet search engines: detecting fluctuations • Through time: comparing result sets of 1 observation repeatedly performed • Observation = one query or set of queries • Frame of reference = other observations & web-knowledge • One moment: consistency of result sets • Observation = one query in set of queries • Frame of reference = other observations

  15. Internet search engines: types of fluctuations • Through time: comparing result sets of 1 observation repeatedly performed • “Document fluctuations” • “Indexing fluctuations” • One moment: consistency of result sets • “Element fluctuations”

  16. A B C

  17. Document fluctuations: example 1

  18. Document fluctuations: example 2

  19. Document fluctuations: experimental results

  20. Indexing fluctuations:experimental results

  21. A1 A2 A1 A2 A1 A2 A3 A4 A3 A4 A3 A4

  22. Element fluctuations: example

  23. Element fluctuations: experimental results

  24. Percentage of documents missed due to fluctuations

  25. Fluctuations: remarks on “correctness” • Fluctuations can be seen as “correct”, if they are reflections of alterations in: • (web-) reality • then document, indexing and element fluctuations are incorrect • the indexed database of a search engine • then only element fluctuations are incorrect • Users do not care; they miss documents

  26. Fluctuations:remarks on “size” • No relation document / element fluctuations < ===== > “size” • Percentage missed documents determines (with other reducing effects, such as depth of indexing) the effective size of an engine

  27. Fluctuations:remarks on “importance” • Users of information • should be aware of the existence of fluctuations • should observe them systematically • Providers of information • should be aware of the existence of fluctuations • Quantitative analyses of the web are hindered by fluctuations • scientometrics; citation analysis • fluctuations lower the effective size of an index

  28. Internet search engines: conclusions of our research • Search engines differ in depth of indexing documents. • Search engines make mistakes: • They are subject to changes in indexing policy.(“indexing fluctuations”) • They forget documents completely (“document fluctuations”) • They miss documents in their result sets (“element fluctuations”). • Considerable differences exist among search engines regarding these fluctuations.

  29. Internet search engines: recommendations related to fluctuations • Fluctuations are “normal”; do not be surprised; do not worry. • Do not try to find a simple explanation to fully understand what happens. • Known item searchers should repeat the search • when using an engine with many element fluctuations; use other search terms; • when using an engine with many document fluctuations: repeat later.

More Related