780 likes | 1.2k Views
Department of Materials Science and Engineering. Stefaan Cottenier. hyperfine interactions (and how to do it in WIEN2k). stefaan.cottenier@ugent.be. http://www.hfinqi.consec.com.au/. Slide by K. Schwarz. nuclear point charges interacting with electron charge distribution.
E N D
Department of MaterialsScienceand Engineering StefaanCottenier hyperfineinteractions(and how to do it in WIEN2k) stefaan.cottenier@ugent.be
nuclear point chargesinteractingwithelectron charge distribution Slideby K. Schwarz
Definition : hyperfineinteraction = all aspects of the nucleus-electroninteractionthat go beyondthe nucleus as anelectric point charge.
electricpointcharge • volume • shape
electricpointcharge N • volume • shape • magnetic moment S
How to measurehyperfineinteractions ? • NMR • NQR • Mössbauerspectroscopy • TDPAC • Laser spectroscopy • LTNO • NMR/ON • PAD • …
How to measurehyperfineinteractions ? • NMR • NQR • Mössbauerspectroscopy • TDPAC • Laser spectroscopy • LTNO • NMR/ON • PAD • … • This talk: • Hyperfinephysics • How to calculatewith WIEN2k • NOT : • What are these usefulfor ? (touched in finalslides)
Content • Definitions • magnetic hyperfine interaction • electric quadrupole interaction • isomer shift • summary
S N
S N
S N
S N
S N
S E Energy (units: B) N
S E Energy (units: B) N
S E Energy (units: B) N
S E Energy (units: B) N
S E Energy (units: B) N
E Energy (units: B)
Classical Quantum(=quantization) E m =-1 m =0 Energy (units: B) m =+1 e.g. I =1
Classical Quantum(=quantization) E m =-1 m =0 Energy (units: B) m =+1 e.g. I =1 Hamiltonian :
nuclearproperty electronproperty (vector) (vector) S N interactionenergy(dot product) :
Source of magnetic fields at the nuclear site in an atom/solid Btot = Bdip + Borb + Bfermi+ Blat
Bdip = electron as bar magnet Source of magnetic fields at the nuclear site in an atom/solid Btot = Bdip + Borb + Bfermi+ Blat
Bdip = electron as bar magnet L r I v -e Morb Borb Source of magnetic fields at the nuclear site in an atom/solid Btot = Bdip + Borb + Bfermi+ Blat • Borb = electron as current loop
Bdip = electron as bar magnet L r I v -e Morb Borb 2s 2p Source of magnetic fields at the nuclear site in an atom/solid Btot = Bdip + Borb + Bfermi+ Blat • Borb = electron as current loop • BFermi = electron in nucleus
Bdip = electron as bar magnet L r I v -e Morb Borb 2s 2p Source of magnetic fields at the nuclear site in an atom/solid Btot = Bdip + Borb + Bfermi+ Blat • Borb = electron as current loop • BFermi = electron in nucleus • Blat= neighbours as bar magnets
How to do it in WIEN2k ? • Magnetic hyperfine field • In regular scf file: • :HFFxxx(Fermi contact contribution) • After post-processing with LAPWDM : • orbital hyperfine field (“3 3” in case.indmc) • dipolar hyperfine field (“3 5” in case.indmc) • in case.scfdmup • After post-processing with DIPAN : • lattice contribution • in case.outputdipan more info: UG 7.8 (lapwdm) UG 8.3 (dipan)
Content • Definitions • magnetic hyperfine interaction • electric quadrupole interaction • isomer shift • summary
Forceon a point charge: • Forceon a general charge:
-Q -Q
-Q -Q
-Q -Q
-Q 2
-Q (deg) Energy (units e2/40) 2 -Q
(deg) Energy (units e2/40)
(deg) m=0 e.g. I = 1 Energy (units e2/40) m=1
nuclearproperty electronproperty (tensor – rank 2 ) (tensor – rank 2 ) interactionenergy(dot product) :
How to do it in WIEN2k ? Electric-field gradient In regular scf file: :EFGxxx :ETAxxx Main directions of the EFG Full analysis printed in case.output2 if EFG keyword in case.in2 is put (UG 7.6) (split into many different contributions) } 5 degrees of freedom • more info: • Blaha, Schwarz, Dederichs, PRB 37 (1988) 2792 • EFG document in wien2k FAQ (Katrin Koch, SC)
Content • Definitions • magnetic hyperfine interaction • electric quadrupole interaction • isomer shift • summary
No no with
No no with