1 / 35

Gender, Sexuality and Bad Language

Gender, Sexuality and Bad Language. Tony McEnery, Department of Linguistics and Modern English Language, University of Lancaster. The background to this talk. Work at Lancaster (Paul Baker, Andrew Hardie, Neil Millar) supported by a grant from the University Lancaster Corpus of Abuse (LCA)

iolana
Download Presentation

Gender, Sexuality and Bad Language

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gender, Sexuality and Bad Language Tony McEnery, Department of Linguistics and Modern English Language, University of Lancaster

  2. The background to this talk • Work at Lancaster (Paul Baker, Andrew Hardie, Neil Millar) supported by a grant from the University • Lancaster Corpus of Abuse (LCA) • Published in part in ‘Swearing in English’ (2005) and a number of journal articles.

  3. Why - well there has been corpus based studies of swearing (Leech, Stenstrom, Ljung) • The main studies of swearing remain non-corpus informed: • Slang (Partridge, 1960) • Anatomy of Swearing (Montagu, 1967, 1973) • Female Eunuch (Greer, 1970) • Language and Woman’s Place (Lakoff, 1975) • Swearing (Hughes, 1991, 1998)

  4. All of these studies make claims about this form of linguistic behaviour which is amenable, to lesser or greater degrees to corpus study • In this talk I will focus on a few claims made by Hughes by way of illustration and then move on to examine gender related work • But first …..

  5. How are we doing it? • Using categorisations used by others to develop an annotation of all of the ‘swear’ words in the BNC spoken corpus(LCA 1.0) and later a broader set of words (LCA 2.0) • Some studies have not considered various forms of swearing (e.g. swear words in a premodifying position) so I developed a categorization of these

  6. Used Sara to mine data from the BNC using three variables as our search parameters - sex, age, social class. Work had to be redone as corpus was corrected. • Of the three variables, the last was and remains problematic • Each word is then encoded to indicate the age, sex and social class of the speaker amongst other things

  7. Further annotation is added to reveal

  8. There is plenty to do! • Let’s quickly look at some claims made by Hughes, then move on to look at gay, queer, puff and fuck. First Hughes: • Claim one - the categories of swearing. Which words fall into which categories • Claim two - which words are used to insult which sex

  9. Looking at infrequent words • Some of the word forms we are looking for have a relatively low frequency in he corpus • Words related to sexual orientation are such words • The reasons for this are interesting to consider • Though small, the data sets may give interesting suggestions which may be followed up by web as corpus studies, for example

  10. Gays, queers and poofs • Data is sparse • But even on a small scale the data is interesting • Gay (24 examples) • Collocates: Is (10), He’s (9), You’re (2), Dad’s (1), Who’s (1) • A prosody of attribution in nearly all of the cases (21)

  11. Strong colligation with the “X is gay” pattern. • The X is male: • He’s (9), he (3), chap (1), dad’s (1), Mick (1), James (1), Male (1), Pat (1), Phil (1), sons (1) • Interestingly, no personal attributions of being gay.

  12. Queer (3 examples) • One abusive, but two have negative attributions! • Similar pattern of colligation, but negation included • “X is not queer” • Is it that we are abusive of that we claim we are not?

  13. Poofter (6 examples) & poof (2 examples) • Singular common nouns. Always P abuse. • Not used in an attributive manner

  14. But note here that we are within a heterosexual (or at least nominally heterosexual) discourse community. This pattern could clearly change if we shift to a homosexual discourse community. • The data is insufficient to test the hypotheses, but it is a useful spur to the flank of the analyst, and can set a research agenda to be pursued by other means

  15. Looking at more frequent words • Some of the words we are looking at have a frequency which means we can fully exploit the annotation on the corpus with some confidence • Fuck is a good example of such a word • So let’s look at fuck

  16. Male v. Female - word forms • Note that while quantity differs, ranking and proportions remain fairly stable. So while swearing may differ quantitatively, it does not differ qualitatively. Same is true of marked female words, like shit.

  17. Full Categories

  18. Categories

  19. Swearing in reported speech • Why is the relative proportion of reported uses of fuck higher for females (roughly one sixth of examples as opposed to one thirty fifth?)

  20. Targets • Proportionately, more female uses of fuck are aimed at females than male uses of fuck, and more male uses of fuck are aimed at males than female uses of fuck. We seem to swear at our own sex most frequently.

  21. Keywords • Notice we have evidence for a tentative explanation of the reported speech discrepancy

  22. New Work – US Speech • Longman Corpus of Spoken American English (Du Bois for Longman) • Work undertaken with Neil Millar • Approximately 5,000,000 words of orthographically transcribed spontaneous speech

  23. Conclusion • Work on-going – the exploitation of the US data is far from being complete. New UK dataset available. • Similar patterns because of a shared cultural heritage? • Corpus data can, and has been, of use in the study of swearing. It is of particular use in looking at differences in usage through a range of variables • It is certainly an area where the corpus and other methodologies can combine

More Related