1 / 22

Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294

Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294. Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires Bordeaux-Gradignan, France Warsow University, Poland GSI Darmstadt, Germany VINCA-Institute Belgrade, Serbia

iona-norman
Download Presentation

Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fragmentation of very neutron-rich projectiles around 132Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires Bordeaux-Gradignan, France Warsow University, Poland GSI Darmstadt, Germany VINCA-Institute Belgrade, Serbia Institute of Physics, Bratislava, Slovakia GSI Feb.‘06

  2. Motivation • Production of extremely neutron-rich isotopes (EURISOL DS task 11.2) (two-step schemes: fission + cold fragmentation) n,p + 238U  132Sn + Be  X • Ground state properties of extremely neutron-rich isotopes • Total interaction cross sections: rms matter distributions • Proton knock-out: rms charge distributions, binding energies • Proton and neutron pickup: charge versus mass distribution GSI Feb.‘06

  3. Motivation • Production of medium-mass neutron-rich isotopes Fission + cold fragmentation n,p + 238U  132Sn + Be  X GSI Feb.‘06

  4. 238U(1 A GeV) + Pb Motivation • Residue production in fission reactions • 238U(950 A MeV)+Pb (T. Enqvist et al., NPA 658 (1999) 47) • 238U(1000 A MeV)+p (M. Bernas et al., NPA 725 (2003) 213) • 238U(1000 A MeV)+d (J. Pereira et al., PhD, USC (2004)) GSI Feb.‘06

  5. Peripheral heavy-ion reactions • at relativistic energies: • large fluctuations in N/Z and excitation energy Motivation • Residue production in cold-fragmentation reactions • Proton-removal channel: • only protons are abraded and the induced excitation energy remains bellow the particle emission threshold • 197Au(950 A MeV)+Be (J. Benlliure et al., NPA 660 (1999) 87) GSI Feb.‘06

  6. EPAX ABRABLA COFRA Motivation • Fragmentation of neutron-rich projectiles Cold fragmentation is not well understood for neutron-rich projectiles GSI Feb.‘06

  7. Motivation • Production cross sections of neutron-rich residues in the fragmentation of 132Sn • 1-4 proton removal cross sections  neutron separation enegies (W.A. Friedman et al., PRC 67 (2003) 051601R) GSI Feb.‘06

  8. Motivation • Description of the residue production in fragmentation reactions (Abrasion-ablation model) 1 Abrasion phase (excited prefragment): 2 Ablation (evaporation) phase • Mass loss: impact parameter +matter/charge distribution • N/Z: hypergeometrical distribution • Excitation energy: isotopic distributions • Binding energies+temperature • Some of these parameters can be determined from specific reaction channels GSI Feb.‘06

  9. Motivation • Mass and charge rms radii from specific reaction channels • Total interaction cross sections: rms matter distributions GSI Feb.‘06

  10. Motivation • Mass and charge rms radii from specific reaction channels • Total interaction cross sections: rms matter distributions • Proton knock-out: rms charge distribution GSI Feb.‘06

  11. Motivation • Mass and charge rms radii from specific reaction channels • Total interaction cross sections: rms matter distributions • Proton knock-out: rms charge distribution • Proton and neutron pickup: charge versus mass distribution N+n  D  N+p + p- N+p  D  N+n + p+ 208Pb+p,d  208Bi+p- R. J. Lombard et al., Europhys. Lett. 6 (1988) 323 A. Kelic et al., PRC 70 (2004) 064608 v(cm/ns) GSI Feb.‘06

  12. Proposed experiment • Production of neutron-rich fission residues 238U(950 A MeV)+Pb  124-132Sn • Fragmentation of neutron-rich fission residues 132Sn + Be  131In,130Cd,129Ag,128Pd 1-4 proton removal: s1p,2p,3p,4p~ 20-1 10-4 mb 124-132Sn + Be  X total interaction: sint ~ 2 b 124-132Sn + Be  123-131In 1 proton removal: s1p ~ 20 mb 124-132Sn + Be  124-132In charge pickup: sDp+p- ~ 0.1 mb 124-132Sn + Be  125-133Sn neutron pickup: sDn+p+ ~ 5 mb GSI Feb.‘06

  13. Experimental details S0-S2:238U(950 A MeV)+Pb  124-132Sn DZ/Z ~ 5 10-3 DBr/r ~ 3 10-4 DToF ~ 150 ps L ~ 18 m DA/A ~ 4.5 10-3 S2-S4:124-132Sn + Be  X DZ/Z ~ 7 10-3 DBr/r ~ 3 10-4 DToF ~ 150 ps L ~ 36 m DA/A ~ 2.4 10-3 GSI Feb.‘06

  14. Experimental details 238U(1 A GeV)+d  1XXSn 5 different settings centered on: 124Sn, 126Sn, 128Sn, 130Sn, 132Sn GSI Feb.‘06

  15. Beam time request • Production yields and acquisition time S0-S2:238U(950 A MeV)+Pb  124-132Sn 238U beam intensity:108 ions s-1 208Pb target: 1500 mg/cm2 • total rate at S2: ~26000 ion s-1 • 132Sn rate at S2: ~ 1000 ions s-1 Limiting factor DAQ unless S1 degrader!!! S2-S4:124-132Sn + Be  X Reaction probability and acquisition time with a 2.6 g/cm2 Be target: • total interaction: ~ 2 b  5 min. < 1% statistical accuracy • 1p: ~ 25 mb  15 min. ~ 1% “ • 2p: ~0.3 mb  5 hours~ 1% “ • 3p: ~ 5 mb  3 days~ 7% “ • 4p: ~ 0.1 mb  1-2 per day • proton pickup: ~ 0.1 mb  4 hours ~ 6% “ GSI Feb.‘06

  16. Beam time request Total requested time: main beam time (238U)  7 days (21 shifts) 6 days accepted parasitic beam (136Xe)  5 days accepted GSI Feb.‘06

  17. Open issues Energy of secondary beam • Lower energy (~ 500 A MeV): closer to EURISOL conditions and higher cross sections for neutron and proton pickup • Lower energy: lower transmission Removable fragmentation target at S2 Detailed calculations of FRS magnetic settings GSI Feb.‘06

  18. Two-step process: 1 Prefragment formation (statistical equilibrium) • Mass loss: impact parameter geometry • N/Z: hypergeometrical distribution • Excitation energy: particle hole excitation+final interactions 2 Neutron evaporation • Binding energies+temperature Isospin thermometer Sensitivity of the isotopic distributions to the excitation energy induced per abraded Nucleon: 27 MeV J. Benlliure et al., NPA 660 (1999) 87 Production of heavy neutron-rich isotopes Analytical description of cold-fragmentation reactions GSI-PAC Sep‘04

  19. Motivation • Isotopic scaling in nuclear reactions • Reactions governed by the statistical model M.B. Tsang et al., PRL 86 (2001) 5023 GSI-PAC Sep‘04

  20. Medium-mass neutron-rich isotopes Two-step schemes: fission + cold fragmentation Primary beam: 1 mA Production target: 100 g/cm2 UCx Fragmentation target: 20% of range Only for extremely neutron-rich Residues the production rates by direct fission is bellow the two-step scenario Sanibel´02

  21. Medium-mass neutron-rich isotopes Two-step schemes: fission + cold fragmentation Sanibel´02

  22. Medium-mass neutron-rich isotopes Two-step schemes: fission + cold fragmentation Sanibel´02

More Related