420 likes | 749 Views
1. Plant breeding and genetics. Biologia fiorale. Stimma Ovario Nettari Antere Petali. 2. 3. Eredità Mendeliana. La prima legge di Mendel – segregazione – è il risultato diretto della separazione degli omologhi in cellule distinte durante la prima divisione meiotica
E N D
1 Plant breeding and genetics Biologia fiorale Stimma Ovario Nettari Antere Petali
3 Eredità Mendeliana • La prima legge di Mendel – segregazione – è il risultato diretto della separazione degli omologhi in cellule distinte durante la prima divisione meiotica • La seconda legge di Mendel – assortimento independente – deriva dalla separazione indipendente di differenti coppie di alleli su cromosomi omologhi
4 Eredità Mendeliana B A b Accoppiamento Segregazione Assortimento Indipendente a B A b a b B A A B a a b
5 Che cosa è il genotipo della F1 ? Come segregherà nella generazione F2 ?
6 X Green, round yy RR Yellow, wrinkled YY rr Cosa sono i genotipi e i fenotipi delle generazioni F1 ed F2 ?
7 Eredità Mendeliana • Risultati di incroci di pisello con parentali che differiscono per 1 carattere • Prima legge : la segregazione Fenotipo parentali F1 F2 F2 Ratio Round/wrinkled round 5474:1850 2.96:1 Yellow/green yellow 6022-2001 3.01:1 Purple/white purple 705:224 3.15:1 Inflated/pinched inflated 882:299 2.95:1 Axial/terminal axial 651:207 3.14:1 Long/short long 787:277 2.84:1
8 Inbreeding • L’Inbreeding è dovuto all’incrocio tra individui molto imparentati grazie ad un comune genito-re ancestrale e sono individui presi a caso dal-la popolazione • La sua estrema espressione è il selfing
9 Scopi dell’inbreeding • Mantenimento di specifici genotipi • 3n genotipi 2n genotipi • n = no. of genes • ex: AA, Aa, aa AA , aa • Selezione contro i recessivi
10 Outcrossing • Incrocio causale – promuove la diversità • Eterozigosità • L’esempio estremo è l’ibrido F1 (Aa)
Auto-Incompatibilità 11 • Rinvenuta in molte specie, inclusa la Brassica spp. • Il locus S è Multiallelico (> 60 alleli !) • Tutti i pollini di una pianta hanno la stessa reazione di incompatibilità S1S3 S1S3 S1S3 NO NO S2S4 S1S2 S2S3 Incompatibile Incompatibile Compatibile
12 Male Sterility Systems • Genic • Nuclear gene conditions sterility • Sterility usually recessive, often msms • Cytoplasmic • Non-nuclear genes responsible for sterility • Pollen parent has no influence on fertility or sterility • Not useful for seed crops • Cytoplasmic-Genic • Non-nuclear genes cause sterility, nuclear restores fertility • Two-gene system required for sterility / fertility • Useful for seed-propagated crops
Inheritance of Male Sterility 13 • Genic • msms = sterile • msms X MsMs • Msms X Msms • msms X Msms • Cytoplasmic • S X F • Cytoplasmic-Genic • Smsms = sterile • NMSMS = fertile • Nmsms = fertile • SMsms = fertile All Msms; 100% fertile 3:1 segregation; 25% sterile 1:1 segregation; 50% fertile All progeny sterile due to maternal inheritance Only Smsms conditions sterility Fertility with either N cytoplasm or dominant Alleles at nuclear restorer locus (Ms)
14 Use of Genic Male Sterility Fertile parent MsMs msms x MsMs Msms • Segregate 3:1, 25% sterile • PROBLEM IS - HOW DO YOU IDENTIFY and maintain msms steriles ?
15 Use of Cytoplasmic Male Sterility • Must use sterile as female parent, • all progeny are sterile S X F S
16 Use of Cytoplasmic-Genic Sterility • Inheritance of CMS system Smsms x Nmsms Smsms only, all sterile Smsms x NMsMs SMsms only, all fertile SMsms x NMsms 1 Smsms sterile 2 SMsms fertile 1 SMsMs fertile S msms msms F S N F F Ms- Ms- S N
17 Variation in ploidy • General concepts: • Genome is basic unit of chromosomal makeup • Chromosomes of a genome inherited together in a ‘normal’ meiosis and mitosis • Chromosome number of the gametophyte is ‘n’ • Chromosome number of the sporophyte is 2n • Base number of chromosomes (one of each pair) is ‘x’ • If 2n=2x=22, gametes are n=x=11 (diploid) • If 2n=4x=44, gametes are n=2x=22 (autotetraploid) • In a monoploid, 2n=x=11 • In a triploid, 2n=3x=33
18 Ploidy Configuration • Haploid • 1x • Diploid • 2x • Tetraploid • 4x • Triploid • 3x
19 Autoploidy • Monoploid A • Diploid AA • Triploid AAA • Tetraploid AAAA • Pentaploid AAAAA • Hexaploid AAAAAA • Duplication: 2n=2x...........2n=4x
20 Genetics of Autoploidy • Autotetraploid: 5 different genotypes • Gametes are 2x • Nulliplex aaaa • Simplex Aaaa • Duplex AAaa • Triplex AAAa • Quadriplex AAAA
21 Banana • Banana typically autotriploid and sterile • Low fertility is desired to make a seedless banana • Fruit is produced parthenocarpically
22 Allopolyploidy • Typical diploid inheritance patterns because of lack of pairing of chromosome sets • Possibility of multiple alleles in different genomes • Can result in unique nuclear-cytoplasmic interactions • Case of cotton demonstrates value of D genome to cultivated types despite poor performance of D genome per se • Dihaploid AB • Allotriploid ABC, AAB, ABB • Allotetraploid AABB • Allopentaploid AABBC • Allohexaploid AABBCC
23 allopolyploidy A B D Separate genomes come together, but each Genome has normal diploid pairing and segregation
24 Triangle of U B. rapa n=10 AA B. juncea n=18 AABB B. napus n=19 AACC B. oleracea n=9 CC B. nigra n=8 BB B. carinata n=17 BBCC
25 Brassciaoleracea and rapa
26 Quantitative inheritance • Quantitative traits • Continuos variation (normal distributions) • Often characterized as being affected by many genes expression of which is modified by the environment • Qualitative traits • Often single gene Mendelian traits • Segregate into discrete classes
27 Distribution of Quantitative trait(s) * Mean * Variance * covariance
28 Pedigree selectionHow to do it • Pedigree, as the name implies, provides a record of the lines of descent of all individuals in each generation. • The accumulation of information is important when decisions need to be made regarding keeping or eliminating a line.
29 Yellow butternut
30 Pedigree selection Requirements • Two parents • Choice of parents is critical, as you invest a lot of time and resources in each pedigree pop’n • Complementary in strengths and weaknesses AAbb x aaBB
31 Pedigree selection Implementation P1 AAbb x P2 aaBB F1 AaBb F2 (9 genotypic classes) 3n A_B_ AAB_ A_BB aabb F(4 genotypic classes) 2n AABB AAbb aaBB aabb
32 Pedigree selection Implementation • Self pollinate each F2 plant, and grow out F3 families. Self pollinate selected plants. • Select among and within families in early generations
33 Pedigree selection F2 plants 1/4 1/2 1/4 BB Bb bb BB BB BB bb BB Bb Bb bb BB Bb Bb bb BB bb bb bb Individuals F3 Families
Pedigree selection 34 Outline F1 Select among F2 individuals F3 Families Select among and within
35 Features of Pedigree selection • After inbreeding and testing lines can be bulked and released as cultivars. • Its fun and flexible • When a superior family is identified, you can trace back in the pedigree and select in earlier generations
36 Negative features • Maximum productivity is established in F2 generations. • From AaBbCcdd cannot select AABBCCDD • Minimum recombination • No opportunities to cross aabbCCDD x AABBccdd