580 likes | 731 Views
Learning to Associate: HybridBoosted Multi-Target Tracker for Crowded Scene. Present by 陳群元. Outline. introduction Related work MAP formulation Affinity model Results Conclusion. overview. STAGE 1. STAGE 2. STAGE 3. STAGE 4. Introduction.
E N D
Learning to Associate: HybridBoosted Multi-Target Tracker for Crowded Scene Present by 陳群元
Outline • introduction • Related work • MAP formulation • Affinity model • Results • Conclusion
STAGE 1 STAGE 2 STAGE 3 STAGE 4
Introduction • learning-based hierarchical approach of multi-target tracking • HybridBoost algorithm-hybrid loss function • association of tracklet is formulated as a joint problem of ranking and classification
ranking • the ranking part aims to rank correct tracklet associations higher than other alternatives
classification • the classification part is responsible to reject wrong associations when no further association should be done
HybridBoost • combines the merits of the RankBoost algorithm and the AdaBoost algorithm .
Related work • the earliest works look at a longer period of time in contrast to frame-by-frame tracking. • To overcome this, a category of DataAssociation based Tracking algorithm • there has been no use of machine learning algorithmin building the affinity model.
MAP formulation • Robust Object Tracking by Hierarchical Association of Detection Responses • ours
MAP formulation v1 • R = {ri} the set of all detection responses j i j i j i i j j i
MAP formulation v1(cont.) • tracklet association
MAP formulation v2(cont.) • Inner cost • Transition cost
MAP formulation v2(cont.) • With these ,we can rewrite it
Affinity model • Hybridboostalgorithm • Feature pool and weak learner • Training process
Hybridboostalgorithm • Ie. T2 T1 T3
Loss function • initial
Strong ranking classifier weak weak weak weak Update sample weight Update weight Update weight
Training process • T:tracklet set from the previous stage • G:groundtruth track set
Training process(cont) • For each Ti ∈ T, if • connecting Ti’stail to the head of some other tracklet
Training process(cont) • connecting Ti’s head to the tail of some other tracklet before Ti which is also matched to G
Training process(cont.) • use thegroundtruthG and the tracklet set Tk−1 obtained from stagek − 1 to generate ranking and binary classification samples • learn a strong ranking classifier Hkby the HybridBoost algorithm • UsingHk as the affinity model to perform association on Tk−1and generate Tk
Experimental results • Implementation details • Evaluation metrics • Analysis of the training process • Tracking performance
Implementation details • dual-threshold strategy to generate short but reliable tracklets • four stages of association • maximum allowed frame gap 16, 32, 64 and 128 • a strong ranking classifier H with 100 weak ranking classifiers • Β=0.75 • ζ = 0
track fragments &ID switches • Traditional ID switch:“two tracks exchanging their ids”. • ID switch : a tracked trajectory changing its matched GT ID • track fragments:more strict
Best features • Motion smoothness (feature type 13 or 14) • color histogram similarity (feature 4) • number of miss detected frames in the gap between the two trackelts (feature 7 or 9).
Conclusion and future work • Use HybridBoost algorithm to learn the affinity model as a joint problem of ranking and classification • The affinity model is integrated in a hierarchical data association framework to track multiple targets in very crowded scenes.
The end • Thank you
Learning to Associate: HybridBoosted Multi-Target Tracker for Crowded Scene Present by 陳群元