1 / 47

Cédric Lorcé

Parton Wigner Distributions of the nucleon. Cédric Lorcé. IPN Orsay - LPT Orsay. June 25 2013, Dipartimento di Fisica, Universita’ di Pavia, Italy. The outline. Zoo of parton distribution functions Physical interpretation Wigner distributions and OAM Model calculations Conclusions.

irving
Download Presentation

Cédric Lorcé

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Parton Wigner Distributions of the nucleon Cédric Lorcé IPN Orsay - LPT Orsay June 25 2013, Dipartimento di Fisica, Universita’ di Pavia, Italy

  2. The outline • Zoo of parton distribution functions • Physical interpretation • Wigner distributions and OAM • Model calculations • Conclusions

  3. The outline • Zoo of parton distribution functions • Physicalinterpretation • Wigner distributions and OAM • Model calculations • Conclusions

  4. The charges Charges Depends on : • Polarization Vector Parton number Axial Parton helicity Tensor Parton transversity

  5. The parton distribution functions (PDFs) PDFs Charges Depends on : • Polarization • Longitudinal momentum (fraction) DIS PDFs

  6. The form factors (FFs) PDFs FFs Charges Depends on : • Polarization • Longitudinal momentum (fraction) • Momentumtransfer Elastic scattering FFs

  7. The generalized PDFs (GPDs) PDFs FFs GPDs Charges Depends on : • Polarization • Longitudinal momentum (fraction) • Momentum transfer DVCS GPDs

  8. The transverse momentum-dependent PDFs (TMDs) TMDs PDFs FFs GPDs Charges Depends on : • Polarization • Longitudinal momentum (fraction) • Momentumtransfer • Transverse momentum No direct connection SIDIS TMDs

  9. The generalized TMDs (GTMDs) GTMDs TMDs PDFs FFs GPDs Charges Depends on : • Polarization • Longitudinal momentum (fraction) • Momentum transfer • Transverse momentum ??? GTMDs

  10. The complete zoo GTMDs TMDs PDFs TMCs TMFFs FFs GPDs Charges Depends on : • Polarization • Longitudinal momentum (fraction) • Momentum transfer • Transverse momentum ??? GTMDs [C.L., Pasquini, Vanderhaeghen (2011)]

  11. The double parton scattering Depends on : • Polarization • Longitudinal momentum (fraction) • Momentum transfer • Transverse momentum • Inter-parton distance DPDFs DPDFs [Diehl, Ostermeier, Schäfer (2012)] [Thürman, Master thesis (2012)]

  12. The outline • Zoo of parton distribution functions • Physicalinterpretation • Wigner distributions and OAM • Model calculations • Conclusions

  13. The physical interpretation Initial/final Average/difference Position Momentum Fourier-conjugated variables

  14. The physical interpretation [Ernst, Sachs, Wali (1960)] [Sachs (1962)] Breit frame Non-relativistic ! Position w.r.t. the CM Creation/annihilation of pairs Lorentz contraction

  15. The physical interpretation [Soper (1977)] [Burkardt (2000)] Drell-Yan frame Position w.r.t. the center of momentum Creation/annihilation of pairs Lorentz contraction

  16. The physical interpretation Dirac matrix ~ quark polarization Quark Wigner operator Wilson line Canonical momentum • Either fix the gauge such that , i.e. work with + boundary condition • Or split the Wilson line to form Dirac variables

  17. The physical interpretation Quark Wigner operator Fixed light-front time No need for time-ordering ! Non-relativistic Wigner distribution [Ji (2003)] [Belitsky, Ji, Yuan (2004)] 3+3D Relativistic Wigner distribution [C.L., Pasquini (2011)] [C.L., Pasquini, Xiong, Yuan (2012)] 2+3D GTMDs

  18. The phase-space picture GTMDs TMDs PDFs FFs GPDs Charges 2+3D 2+1D 0+3D 0+1D 2+0D

  19. The outline • Zoo of parton distribution functions • Physicalinterpretation • Wigner distributions and OAM • Model calculations • Conclusions

  20. The phase-space distribution [Wigner (1932)] [Moyal (1949)] Wigner distribution Galilei covariant • Either non-relativistic • Or restricted to transverse position Probabilistic interpretation Heisenberg’s uncertainty relations Expectation value Position space Momentum space Phase space

  21. The quark orbital angular momentum [C.L., Pasquini (2011)] GTMD correlator Wigner distribution Orbital angular momentum Unpolarized quark density Parametrization [Meißner, Metz, Schlegel (2009)]

  22. The parametrization @ twist-2 and x=0 GTMDs TMDs GPDs [Meißner, Metz, Schlegel (2009)] Parametrization : Quark polarization Nucleon polarization Monopole Dipole Quadrupole

  23. The path dependence [C.L., Pasquini, Xiong, Yuan (2012)] [Hatta (2012)] [Ji, Xiong, Yuan (2012)] [C.L. (2013)] Orbital angular momentum Reference point [Jaffe, Manohar (1990)] [Ji (1997)] Canonical Kinetic ISI FSI Drell-Yan SIDIS

  24. The proton spin decompositions [C.L. (2013)] [Leader, C.L. (in preparation)] Reviews : Canonical Kinetic [Jaffe, Manohar (1990)] [Ji (1997)] Pros: Pros: • Satisfies canonical relations • Complete decomposition • Gauge-invariant decomposition • Accessible in DIS and DVCS Cons: Cons: • Does not satisfy canonical relations • Incomplete decomposition • Gauge-variant decomposition • Missing observables for the OAM News: News: • Gauge-invariant extension • Complete decomposition [Chen et al. (2008)] [Wakamatsu (2009,2010)] • OAM accessible via Wigner distributions [C.L., Pasquini (2012)] [C.L., Pasquini, Xiong, Yuan(2012)] [Hatta (2012)]

  25. The outline • Zoo of parton distribution functions • Physicalinterpretation • Wigner distributions and OAM • Model calculations • Conclusions

  26. The light-front overlap representation • [C.L., Pasquini, Vanderhaeghen (2011)] Overlap representation Momentum Polarization Light-front quark models Wigner rotation

  27. The model results • [C.L., Pasquini (2011)] Wigner distribution of unpolarized quark in unpolarized nucleon favored disfavored Left-right symmetry No net quark OAM

  28. The model results • [C.L., Pasquini (2011)] Distortion induced by the nucleon longitudinal polarization Proton spin u-quark OAM d-quark OAM

  29. The model results • [C.L., Pasquini, Xiong, Yuan (2012)] Average transverse quark momentum in a longitudinally polarized nucleon « Vorticity »

  30. The model results • [C.L., Pasquini (2011)] Distortion induced by the quark longitudinal polarization Quark spin u-quark OAM d-quark OAM

  31. The model results • [C.L., Pasquini (2011)] Quark spin-nucleon spin correlation Proton spin u-quark spin d-quark spin

  32. The model results • [C.L., Pasquini (2011)]

  33. The emerging picture Longitudinal Transverse [Burkardt (2005)] [Barone et al. (2008)] [C.L., Pasquini (2011)]

  34. The canonical and kinetic OAM Quark canonical OAM [C.L., Pasquini (2011)] [C.L., Pasquini, Xiong, Yuan (2012)] [Hatta (2012)] Quark naive canonical OAM [Burkardt (2007)] [Efremov et al. (2008,2010)] [She, Zhu, Ma (2009)] [Avakian et al. (2010)] [C.L., Pasquini (2011)] Model-dependent ! Quark kinetic OAM [Ji (1997)] [Penttinen et al. (2000)] [Kiptily, Polyakov (2004)] [Hatta (2012)] Pure twist-3 No gluons and not QCD EOM ! but [C.L., Pasquini (2011)]

  35. The conclusions • Twist-2 parton distributions provide • multidimensional pictures of the nucleon • Relativistic phase-space distributions exist. • Open question: how to access them? • Both kinetic (Ji) and canonical (Jaffe-Manohar) • are measurable (twist-2 and twist-3) • Model calculations can test spin sum rules

  36. Backup slides

  37. OAM and origin dependence Naive Relative Intrinsic Depends on proton position Momentum conservation Transverse center of momentum Physical interpretation ? Equivalence Intrinsic Naive Relative

  38. Overlap representation Fock expansion of the proton state Fock states Simultaneous eigenstates of Momentum Light-front helicity

  39. Overlap representation Light-front wave functions Eigenstates of parton light-front helicity Eigenstates of total OAM gauge Proton state Probabilityassociated with the N,b Fock state Normalization

  40. GTMDs TMDs GPDs Overlap representation Fock-state contributions [C.L., Pasquini (2011)] [C.L. et al. (2012)] Kinetic OAM Naive canonical OAM Canonical OAM

  41. DVCS vs. SIDIS Incoherent scattering DVCS SIDIS FFs GPDs TMDs Factorization Compton form factor Cross section hard soft • process dependent • perturbative • « universal » • non-perturbative

  42. GPDs vs. TMDs GPDs TMDs Dirac matrix Correlator Correlator Off-forward! Forward! Wilson line ISI FSI e.g. DY e.g. SIDIS

  43. Quark polarization Quark polarization Nucleon polarization Nucleon polarization LC helicity and canonical spin [C.L., Pasquini (2011)] LC helicity Canonical spin

  44. Interesting relations *=SU(6) Model relations Linear relations Quadratic relation Flavor-dependent * * * * * Flavor-independent * * * * * * * Bag LFcQSM LFCQM S Diquark AV Diquark Cov. Parton Quark Target [Jaffe, Ji (1991), Signal (1997), Barone & al. (2002), Avakian & al. (2008-2010)] [C.L., Pasquini, Vanderhaeghen (2011)] [Pasquini & al. (2005-2008)] [Ma & al. (1996-2009), Jakob & al. (1997), Bacchetta & al. (2008)] [Ma & al. (1996-2009), Jakob & al. (1997)][Bacchetta & al. (2008)] [Efremov & al. (2009)] [Meißner & al. (2007)]

  45. Geometrical explanation [C.L., Pasquini (2011)] Preliminaries Conditions: • Quasi-free quarks • Spherical symmetry Wigner rotation (reduces to Melosh rotation in case of FREE quarks) Canonical spin Light-front helicity

  46. Geometrical explanation Axial symmetry about z

  47. Geometrical explanation Axial symmetry about z

More Related