220 likes | 235 Views
Explore how leveraging repetitions can speed up Hidden Markov Models runtime, including the first provable Viterbi's algorithm speedup. Learn about compression schemes, decoding and training algorithms in this informative study.
E N D
Speeding Up Algorithms for Hidden Markov Models by Exploiting Repetitions Shay Mozes Oren Weimann (MIT) Michal Ziv-Ukelson (Tel-Aviv U.)
Shortly: • HiddenMarkov Models are extensively used to model processes in many fields • The runtime of HMM algorithms is usually linear in the length of the input • We show how to exploit repetitions to obtain speedup • First provable speedup of Viterbi’s algorithm • Can use different compression schemes • Applies to several decoding and training algorithms
Markov Models P1←1= 0.9 P2←1= 0.1 P2←2= 0.8 • statesq1 , … ,qk q2 q1 P1←2= 0.2 • transition probabilitiesPi←j e1(A) = 0.3 e1(C) = 0.2 e1(G) = 0.2 e1(T) = 0.3 e2(A) = 0.2 e2(C) = 0.3 e2(G) = 0.3 e2(T) = 0.2 • emission probabilitiesei(σ) σєΣ • time independent, discrete, finite
Markov Models HiddenMarkov Models time 1 1 1 1 2 2 2 2 states k k k k xn x1 x2 x3 observed string • We are only given the description of the model and the observed string • Decoding: find the hidden sequence of states that is most likely to have generated the observed string
Decoding – Viterbi’s Algorithm time states v6[4]=maxj{e4(c)·P4←j·v5[j]} v6[4]= e4(c)·P4←2·v5[2] v5[2] v6[4]= P4←2·v5[2] v6[4]= v5[2] probability of best sequence of states that emits first 5 chars and ends in state 2 probability of best sequence of states that emits first 5 chars and ends in state j
Outline • Overview • Exploiting repetitions • Using LZ78 • Using Run-Length Encoding • Summary of results
VA in Matrix Notation v1[i]=maxj{ei(x1)·Pi←j · v0[j]} Mij(σ) = ei (σ)·Pi←j v1[i]=maxj{ Mij(x1) · v0[j]} (A⊗B)ij= maxk{Aik ·Bkj } Viterbi’s algorithm: O(k2n) vn=M(xn) ⊗ M(xn-1) ⊗ ··· ⊗ M(x1) ⊗v0 v1= M(x1) ⊗v0 v2= M(x2) ⊗ M(x1) ⊗v0 O(k3n)
Exploiting Repetitions c a t g a a c t g a a c vn=M(c)⊗M(a)⊗M(a)⊗M(g)⊗M(t)⊗M(c)⊗M(a)⊗M(a)⊗M(g)⊗M(t)⊗M(a)⊗M(c)⊗v0 12 steps • compute M(W) = M(c)⊗M(a)⊗M(a)⊗M(g) once • use it twice! vn=M(W)⊗M(t)⊗M(W)⊗M(t)⊗M(a)⊗M(c) ⊗v0 6 steps
Exploiting repetitions ℓ - length of repetition W λ – number of times W repeats in string computing M(W) costs (ℓ -1)k3 each time W appears we save (ℓ -1)k2 W is good if λ(ℓ -1)k2 > (ℓ -1)k3 number of repeatsλ > k number of states matrix-matrix multiplication > matrix-vector multiplication
Offline General Scheme • dictionary selection: choose the set D={Wi } of good substrings • encoding: compute M(Wi ) for every Wi in D • parsing: partition the input X into good substringsX = Wi1Wi2 … Win’X’ = i1,i2, … ,in’ • propagation: run Viterbi’s Algorithm on X’ using M(Wi)
Outline • Overview • Exploiting repetitions • Using LZ78 • Using Run-Length Encoding • Summary of results
LZ78 • The next LZ-word is the longest LZ-word previously seen plus one character • Use a trie • Number of LZ-words is asymptotically < n ∕ log n g a aacgacg c g
Using LZ78 Cost • dictionary selection:D = words in LZ parse of X • encoding: use incremental nature of LZM(Wσ)= M(W) ⊗M(σ) • parsing:X’ = LZ parse of X • propagation: run VA on X’ using M(Wi ) • Speedup: k2n log n k3n ∕ log n k • O(n) • O(k3n ∕ log n) • O(n) • O(k2n∕ log n)
Improvement a g c g • Remember speedup condition: λ > k • Use just LZ-words that appear more than k times • These words are represented by trie nodes with more than k descendants • Now must parse X (step III) differently • Ensures graceful degradation with increasing k:Speedup: min(1,log n∕ k)
Experimental results ~x5 faster: • Short - 1.5Mbp chromosome 4 of S. Cerevisiae (yeast) • Long - 22Mbp human Y-chromosome
Outline • Overview • Exploiting repetitions • Using LZ78 • Using Run-Length Encoding • Summary of results
Run Length Encoding aaaccggggg → a3c2g5 aaaccggggg → a2a1c2g4g1
Summary of results • General framework • LZ78 log(n) ∕ k • RLE r ∕log(r) • Byte-Pair Encoding r • Path reconstruction O(n) • F/B algorithms (standard matrix multiplication) • Viterbi training same speedups apply • Baum-Welch training speedup, many details • Parallelization
Thank you! Any questions?
Path traceback • In VA, easy to do in O(n) time by keeping track of maximizing states during computation • The problem: we run VA on X’, so we get the sequence of states for X’, not for X.we only get the states on the boundaries of good substrings of X • Solution: keep track of maximizing states when computing the matrices M(w). Takes O(n) time and O(nk2) space
Training • Estimate unknown parameters Pi←j , ei(σ) • Use Expectation Maximization: • Decoding • Recalculate parameters • Viterbi Training: each iteration costs O( VA + n + k2) path traceback + update Pi←j , ei(σ) Decoding (bottleneck) speedup!
Baum Welch Training • each iteration costs: O( FB + nk2) • If substring w has length l and repeats λ times satisfies:then can speed up the entire process by precalculation path traceback + update Pi←j , ei(σ) Decoding O(nk2)