1.18k likes | 1.35k Views
ENTC 3331 RF Fundamentals. Dr. Hugh Blanton ENTC 3331. Measurement Units. The System of International Units (SI units) was adopted in 1960. The use of older systems still persists, but it is always possible to convert non-standard measurements to SI units.
E N D
ENTC 3331 RF Fundamentals Dr. Hugh Blanton ENTC 3331
Measurement Units • The System of International Units (SI units) was adopted in 1960. • The use of older systems still persists, but it is always possible to convert non-standard measurements to SI units. Dr. Blanton - ENTC 3331 - Math Review 3
SI (International Standard) Base Units • meter (m) = about a yard • kilogram (kg) = about 2.2 lbs • liter (l) = about a quart • liter (l) = 1000 mL Dr. Blanton - ENTC 3331 - Math Review 4
Fundamental Units Seven Fundamental physical phenomena. Dr. Blanton - ENTC 3331 - Math Review 5
Unit Conversions • When converting physical values between one system of units and another, it is useful to think of the conversion factor as a mathematical equation. • In solving such equations, one must only multiply or divide both sides of the equation by the same factor to keep the equation consistent. Dr. Blanton - ENTC 3331 - Math Review 6
æ æ ö ö 1 1 yd yd = ç ç ÷ ÷ 23 23 23 ft ft ft yd 7.6 3 3 ft ft è è ø ø æ ö 1 yd 23 = ç ÷ 23 ft yd 3 ft 3 è ø Same Quantity Unit Conversions • Example: 23 feet = ? yards Dr. Blanton - ENTC 3331 - Math Review 7
Unit Conversions • Example: 5 yd2 = ? ft2 Dr. Blanton - ENTC 3331 - Math Review 8
Units • Fundamental Units • The SI system recognizes that there are only a few truly fundamental physical properties that need basic (and arbitrary) units of measure, and that all other units can be derived from them. Dr. Blanton - ENTC 3331 - Math Review 9
Derived Units • The funadmental units are used as the basis of numerous derived SI units. • Note that derived SI units are sometimes named after famous physicists. Dr. Blanton - ENTC 3331 - Math Review 10
Derived Units Dr. Blanton - ENTC 3331 - Math Review 11
Unit Multiplication Factors • An additional letter that denotes a multiplying factor may prefix fundamental or derived units. • The more common multiplying factors increase or decrease the unit by powers of ten. Dr. Blanton - ENTC 3331 - Math Review 12
Unit Multiplication Factors • An additional letter that denotes a multiplying factor may prefix fundamental or derived units. • The more common multiplying factors increase or decrease the unit by powers of ten. Dr. Blanton - ENTC 3331 - Math Review 13
Powers of Ten (big) • 101 = 10 • 103 = 1000 (thousand) • 106 = 1,000,000 (million) • 109 = 1,000,000,000 (billion) Dr. Blanton - ENTC 3331 - Math Review 14
Powers of Ten (small) • 100 = 1 • 10-3 = 0.001 (thousandth) • 10-6 = 0.000001 (millionth) • 10-9 = 0.000000001 (billionth) Dr. Blanton - ENTC 3331 - Math Review 15
Scientific Notation • 7,000,000,000 • = 7 billion • = 7 109 • 7,000,000 • = 7 million • = 7 106 Dr. Blanton - ENTC 3331 - Math Review 16
3 significant digits Scientific Notation • 7,240,000 • = 7.24 million • = 7.24 106 Dr. Blanton - ENTC 3331 - Math Review 17
6 decimal places Very Large Quantities • 7,240,000 = 7.24 106 Dr. Blanton - ENTC 3331 - Math Review 18
Very Small Quantities • 0.0000123 = 1.23 10-5 5 decimal places Dr. Blanton - ENTC 3331 - Math Review 19
Engineering Notation • Exponents = 3, 6, 9, 12, . . . • Instead of5.32 107 • we write • 53.2 106 Decimal part got bigger Exponent got smaller Dr. Blanton - ENTC 3331 - Math Review 20
Adding and Subtracting • Exponents must be the same! • (1.2 106) + (2.3 105) • change to • (1.2 106) + (0.23 106) • = 1.43 106 Dr. Blanton - ENTC 3331 - Math Review 21
Multiplying • Exponents Add • (3.1 106)(2.0 102) • = 6.2 108 Dr. Blanton - ENTC 3331 - Math Review 22
Dividing • Exponents Subtract • (3.8 106) • (2.0 102) • = 1.9 104 6 - 2 = 4 Dr. Blanton - ENTC 3331 - Math Review 23
Adding Fractions • You can only add like to like • Same Denominators Dr. Blanton - ENTC 3331 - Math Review 24
Different Denominators • Make them the same • find a common denominator • The product of all denominators is always a common denominator • But not always the least common denominator Dr. Blanton - ENTC 3331 - Math Review 25
Finding the LCD • Example: Dr. Blanton - ENTC 3331 - Math Review 26
Factor the Denominators Dr. Blanton - ENTC 3331 - Math Review 27
Assemble LCD Dr. Blanton - ENTC 3331 - Math Review 28
×5 ×4 ×5 ×4 Build up Denominators to LCD Dr. Blanton - ENTC 3331 - Math Review 29
Add Numerators And Reduce if Needed Dr. Blanton - ENTC 3331 - Math Review 30
Rational Expressions • Example: Dr. Blanton - ENTC 3331 - Math Review 31
Factor the Denominators Dr. Blanton - ENTC 3331 - Math Review 32
DENOMINATORS Assemble LCD Dr. Blanton - ENTC 3331 - Math Review 33
( x 1 ) ( ( ( x x x 1 1 1 ) ) ) + - - + ( ) FACTORED LCD = ( x + 1 )( x - 1 )( x - 1 ) Build up Fractions to LCD Dr. Blanton - ENTC 3331 - Math Review 34
Add Numerators Dr. Blanton - ENTC 3331 - Math Review 35
Simplify Numerator Dr. Blanton - ENTC 3331 - Math Review 36
Radical Index n x Radicand Radicals Dr. Blanton - ENTC 3331 - Math Review 37
Meaning Dr. Blanton - ENTC 3331 - Math Review 38
Example Dr. Blanton - ENTC 3331 - Math Review 39
An Ambiguity • but it’s also true that. . . Dr. Blanton - ENTC 3331 - Math Review 40
So why not say It’s also true that • ? Dr. Blanton - ENTC 3331 - Math Review 41
Two Answers? • Roots with an even index always have both a positive and a negative root • Because squaring either a negative or a positive gives the same result Dr. Blanton - ENTC 3331 - Math Review 42
Principal Root • To avoid confusion we define the principal root to be the positive root, so: Dr. Blanton - ENTC 3331 - Math Review 43
The Negative Root • If we want the negative root we use a minus sign: Dr. Blanton - ENTC 3331 - Math Review 44
Negative Radicands • Do Not Confuse • !!! • With • Does not exist Dr. Blanton - ENTC 3331 - Math Review 45
Negative Radicands • You cannot take an even root of a negative number • Because you cannot square any number and get a negative result Dr. Blanton - ENTC 3331 - Math Review 46
Odd Roots of Negative Radicands • You can take odd roots of negative numbers: Dr. Blanton - ENTC 3331 - Math Review 47
for all non-negative x Some Square Root Identities • for all non-negative x • for all x Dr. Blanton - ENTC 3331 - Math Review 48
for example, you cannot say A Common Error • What is the correct result? Dr. Blanton - ENTC 3331 - Math Review 49
First Evaluate Inside Dr. Blanton - ENTC 3331 - Math Review 50