230 likes | 420 Views
Complex analysis of waste and industrial materials in the Laboratory of X-Ray Diffraction of ING PAN. dr Łukasz Kruszewski. Bruker axs D8 ADVANCE. VÅNTEC-1 LPS detector. V ÅNTEC vs scintillation det .: ca . 100x better resolution . very good peak-to-background intensity ratio.
E N D
Complex analysis of waste and industrial materials in the Laboratory of X-Ray Diffraction of ING PAN dr Łukasz Kruszewski
VÅNTEC-1 LPS detector • VÅNTECvsscintillationdet.: ca. 100x better resolution • verygoodpeak-to-backgroundintensityratio Linear Position Sensitive (superfast) detector • 1s/step „standard” counting time 416s/step for VÅNTEC
Bruker axs D8 ADVANCE • standard qualitativeanalysis of complexmixtures (ca. 3 min. analysis) • quantitativeanalysisof simple and complexmixtures incl. flyash, magneticseparates, clinkers, bricks, pyrometallurgic slags etc. (mainlyRietveldmethod in TOPAS) • determination of crystallinitydegree and amorphous(glass) phasecontent; unit cellparameters • transmission geometry analysis of polytypes • grazingincidence surfacefacturecharacteristics • thermal chamber real-time phasetransitionanalysis
Calibrationstandards LaB6
TOPAS – a complextool for PXRD data analysis • TOtalPowderPatterndecomposition (math. deconvolution) • peakshape and whole profile fitting („repairing”) • backgroundcorrections (Chebychevpolynomials, 1/x function) • samplepreparation and sample-derivederrors (sampledisplacement, absorption, preferredorientation) • instrument-derivederrors (zero error, tangentialcorrection, untypical geometry) LaB6 and Si – basedcalibration:
TOPAS – precisephaseinput data • hklphase PawleyorLeBailmethod (unit cellparameters, general fitting) • structurephase fullstructure data (Rietveldquantitativeanalysis, precise unit cellparameterscalculation) • peaksphase amorphousphasecontentdetermination
TOPAS – quantitativeanalysis – iron-oxide-rich paralava of burning post coal-miningdump low error calculated unit cell and other parameters Very good fitting result Good background statistics full quantitative result for 11 crystalline species
TOPAS – quantitativeanalysis – crystallinitydegree amorphousphasecontent Precise calculation statistics information Goodness of Fit (χ2) Residual – weighted pattern Durbin-Watson statistics
TOPAS – quantitativeanalysis – fulltext report QuantitativeAnalysis - Rietveld Phase 1 : "Fayalite magnesian" 30(410) % Phase 2 : Diopside 7(86) % Phase 3 : Hercynite 20(210) % Phase 4 : Hematite 4(51) % Phase 5 : "Bytownite An85" 6(250) % Phase 6 : Magnesioferrite 1(1200) % Phase 7 : Quartz 4(56) % Phase 8 : "Mullite 3:2" 3(33) % Phase 9 : "Tridymite low" 2(22) % Phase 10 : Maghemite 20(230) % Phase 11 : Indialite_KCa 6(85) % Background One on X 1(140000) Chebychevpolynomial, Coefficient 0 2400(3600) 1 -200(1800) 2 50(440) 3 20(100) 4 -13(23) Structure 1 Phasename Fayalite magnesian R-Bragg 0.661 Spacegroup 62 Scale 0.000568(16) Cell Mass 741.5(57) CellVolume (Å^3) 305.587(76) Wt% - Rietveld 30(410) CrystalliteSize Cry Size Lorentzian (nm) 176(20) Crystal Linear Absorption Coeff. (1/cm) 216.1(17) CrystalDensity (g/cm^3) 4.029(31) PreferredOrientation (Dir 1 : 3 0 -1) 0.918(14) Latticeparameters a (Å) 10.4423(15) b (Å) 6.07677(92) c (Å) 4.81578(65) SiteNp x y z Atom OccBeq s1 4 0.00000 0.000000.00000 FE+2 0.605(37) 0.41 MG+2 0.395(37) 0.41 s2 4 0.28000 0.25000 0.98610 FE+2 0.812(26) 0.36 MG+2 0.188(26) 0.36 s3 4 0.09720 0.25000 0.43070 SI+4 1 0.27 s4 4 0.09200 0.25000 0.76680 O-2 1 0.43 s5 4 0.45310 0.25000 0.21030 O-2 1 0.48 s6 8 0.16530 0.03630 0.28810 O-2 1 0.52 Corrections Specimendisplacement -0.117(11) LP Factor 0 Absorption (1/cm) 24.5(40)
TOPAS – quantitativeanalysis – whiteclinker (porcellanite) from post coal-miningburningdump
TOPAS – quantitativeanalysis – syntheticmixture: Muscovite70Kaolinite10Quartz20 special peak type function used for kaolinite and muscovite: PV_MOD
mri Thermal Chamberadd – RESEARCH (Bruker axs example)
mri Thermal Chamberadd – RESEARCH Bouna, L. and Rhouta, B. and Amjoud, M. and Maury, Francis and Lafont, Marie-Christine and Jada, A. and Senocq, François and Daoudi, L. Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. (2011) Applied Clay Science, vol. 52 (n°3). pp. 301-311. ISSN 0169-1317
mri Thermal Chamberadd – RESEARCH Bouna, L. and Rhouta, B. and Amjoud, M. and Maury, Francis and Lafont, Marie-Christine and Jada, A. and Senocq, François and Daoudi, L. Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. (2011) Applied Clay Science, vol. 52 (n°3). pp. 301-311. ISSN 0169-1317
mri Thermal Chamberadd – RESEARCH Bouna, L. and Rhouta, B. and Amjoud, M. and Maury, Francis and Lafont, Marie-Christine and Jada, A. and Senocq, François and Daoudi, L. Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. (2011) Applied Clay Science, vol. 52 (n°3). pp. 301-311. ISSN 0169-1317
mri Thermal Chamberadd – RESEARCH FATIGUE BEHAVIOR OF PIEZOELECTRIC CERAMICS MATERIAL - Riffat Asim Pasha 03-UET/PhD-ME-03
mri Thermal Chamberadd – RESEARCH RONALD C. PETERSON AND ALAN H. GRANT 2005: DEHYDRATION AND CRYSTALLIZATION REACTIONS OF SECONDARY SULFATE MINERALS FOUND IN MINE WASTE: IN SITU POWDER-DIFFRACTION EXPERIMENTS. The Canadian Mineralogist, Vol. 43, pp. 1171-1181
mri Thermal Chamberadd – RESEARCH RONALD C. PETERSON AND ALAN H. GRANT 2005: DEHYDRATION AND CRYSTALLIZATION REACTIONS OF SECONDARY SULFATE MINERALS FOUND IN MINE WASTE: IN SITU POWDER-DIFFRACTION EXPERIMENTS. The Canadian Mineralogist, Vol. 43, pp. 1171-1181