750 likes | 766 Views
Dive into the complex world of anti-matter physics with a series of lectures covering topics such as CKM matrix, CP violation, meson decays, and more. Discover the crucial role of CKM elements and their hierarchy, the experimental verification of theoretical concepts, and the measurement of CP-violating effects. Explore the formalism of neutral meson oscillations and the classification of CP-violating effects in decays, mixing, and interference. Learn about CKM angle measurements, penguin diagrams, and the intriguing dynamics of particles like kaons. Join us on a captivating journey through the physics of anti-matter.
E N D
Physics of Anti-matterLecture 6 N. Tuning Niels Tuning (1)
Plan • Mon 3 Feb: Anti-matter + SM • Wed 5 Feb: CKM matrix + Unitarity Triangle • Mon 10 Feb: Mixing + Master eqs. + B0J/ψKs • Wed 12 Feb: CP violation in B(s) decays (I) • Mon 17 Feb: CP violation in B(s) decays (II) • Wed 19 Feb: CP violation in K decays + Overview • Mon 24 Feb: Mini-project (MSc. V. Syropoulos) • Wed 26 Feb: Exam • Final Mark: 2/3*Exam + 1/6*Homework + 1/6*Mini project • In March: 7 Lectures on Flavour Physics by prof.dr. R. Fleischer Niels Tuning (2)
Recap uI u W W d,s,b dI • Diagonalize Yukawa matrix Yij • Mass terms • Quarks rotate • Off diagonal terms in charged current couplings Niels Tuning (4)
Why bother with all this? • CKM matrix has origin in LYukawa • Intricately related to quark massed… • Both quark masses and CKM elements show intriguing hierarchy • There is a whole industry of theorist trying to postdict the CKM matrix based on arguments on the mass matrix in LYukawa… Niels Tuning (5)
CKM-matrix: where are the phases? • Possibility 1: simply 3 ‘rotations’, and put phase on smallest: u W d,s,b • Possibility 2: parameterize according to magnitude, in O(λ): Niels Tuning (6)
This was theory, now comes experiment • We already saw how the moduli |Vij| are determined • Now we will work towards the measurement of the imaginary part • Parameter: η • Equivalent: angles α, β, γ . • To measure this, we need the formalism of neutral meson oscillations… Niels Tuning (7)
Meson Decays (‘direct’) Decay Interference • Formalism of meson oscillations: • Subsequent: decay P0 f P0P0 f Interference
Classification of CP Violating effects • CP violation in decay • CP violation in mixing • CP violation in interference Niels Tuning (9)
Classification of CP Violating effects • CP violation in decay Example: • CP violation in mixing Example: • CP violation in interference Example: B0→J/ψKs Niels Tuning (10)
Remember! Necessary ingredients for CP violation: • Two (interfering) amplitudes • Phase difference between amplitudes • one CP conserving phase (‘strong’ phase) • one CP violating phase (‘weak’ phase) 2 amplitudes 2 phases Niels Tuning (11)
Remember! 2 amplitudes 2 phases Niels Tuning (12)
CKM Angle measurements from Bd,u decays • Sources of phases in Bd,u amplitudes* • The standard techniques for the angles: bu *In Wolfenstein phase convention. td B0 mixing + single bu decay B0 mixing + single bc decay Interfere bc and bu in B± decay. Niels Tuning (13)
Classification of CP Violating effects • CP violation in decay • CP violation in mixing • CP violation in interference Niels Tuning (14)
Other ways of measuring sin2β • Need interference of bc transition and B0 –B0 mixing • Let’s look at other bc decays to CP eigenstates: All these decay amplitudes have the same phase (in the Wolfenstein parameterization) so they (should) measure the same CP violation Niels Tuning (15)
CP in interference with BφKs • Same as B0J/ψKs : • Interference between B0→fCP and B0→B0→fCP • For example: B0→J/ΨKs and B0→B0→ J/ΨKs • For example: B0→φKs and B0→B0→ φKs Amplitude 1 Amplitude 2 + e-iφ Niels Tuning (16)
CP in interference with BφKs: what is different?? • Same as B0J/ψKs : • Interference between B0→fCP and B0→B0→fCP • For example: B0→J/ΨKs and B0→B0→ J/ΨKs • For example: B0→φKs and B0→B0→ φKs Amplitude 1 Amplitude 2 + e-iφ Niels Tuning (17)
Penguin diagrams Nucl. Phys. B131:285 1977 Niels Tuning (18)
Penguins?? The original penguin: A real penguin: Our penguin: Niels Tuning (19)
Funny Flying Penguin Dead Penguin Penguin T-shirt: Super Penguin: Niels Tuning (20)
B0φKS “Penguin” diagram: ΔB=1 s b μ μ The “b-s penguin” Asymmetry in SM B0J/ψKS • … unless there is new physics! • New particles (also heavy) can show up in loops: • Can affect the branching ratio • And can introduce additional phase and affect the asymmetry Niels Tuning (21)
d Ks ~~ d g,b,…? s B s b t φ s d Ks d s B c b J/ψ c Hint for new physics?? ? • sin2βbccs= 0.68 ± 0.03 • sin2βpeng= 0.52 ± 0.05 sin2β sin2βpeng Niels Tuning (22) S.T’Jampens, CKM fitter, Beauty2006
Next… Something completely different? No, just K • CP violation in decay • CP violation in mixing • CP violation in interference
Kaons… • Different notation: confusing! • K1, K2, KL, KS, K+, K-, K0 • Smaller CP violating effects • But historically important! • Concepts same as in B-system, so you have a chance to understand… Niels Tuning (24)
Neutral kaons – 60 years of history 1947 : First K0 observation in cloud chamber (“V particle”) 1955 : Introduction of Strangeness (Gell-Mann & Nishijima) K0,K0 are two distinct particles (Gell-Mann & Pais) 1956 : Parity violation observation of long lived KL (BNL Cosmotron) 1960 : Dm = mL-mS measured from regeneration 1964 : Discovery of CP violation (Cronin & Fitch) 1970 : Suppression of FCNC, KLmm - GIM mechanism/charm hypothesis 1972 : 6-quark model; CP violation explained in SM (Kobayashi & Maskawa) 1992-2000 : K0,K0 time evolution, decays, asymmetries (CPLear) 1999-2003 : Direct CP violation measured: e’/e≠ 0 (KTeV and NA48) … the θ0 must be considered as a "particle mixture" exhibiting two distinct lifetimes, that each lifetime is associated with a different set of decay modes, and that no more than half of all θ0's undergo the familiar decay into two pions. Niels Tuning (25) From G.Capon
Intermezzo: CP eigenvalue • Remember: • P2 = 1 (x -x x) • C2 = 1 (ψψ ψ) • CP2 =1 • CP | f > = | f > • Knowing this we can evaluate the effect of CP on the K0 • CP|K0> = -1| K0> • CP| K0> = -1|K0 > • CP eigenstates: • |KS> = p| K0> +q|K0> • |KL> = p| K0> - q|K0> • |Ks> (CP=+1) → pp (CP= (-1)(-1)(-1)l=0 =+1) • |KL> (CP=-1) →p pp (CP = (-1)(-1)(-1)(-1)l=0 = -1) ( S(K)=0 L(ππ)=0 ) Niels Tuning (26)
Decays of neutral kaons Neutral kaons is the lightest strange particle it must decay through the weak interaction If weak force conserves CP then decay products of K1 can only be a CP=+1 state, i.e.|K1> (CP=+1) → pp (CP= (-1)(-1)(-1)l=0 =+1) decay products of K2 can only be a CP=-1 state, i.e.|K2> (CP=-1) →p p p (CP = (-1)(-1)(-1)(-1)l=0 = -1) You can use neutral kaons to precisely test that the weak force preserves CP (or not) If you (somehow) have a pure CP=-1 K2 state and you observe it decaying into 2 pions (with CP=+1) then you know that the weak decay violates CP… ( S(K)=0 L(ππ)=0 ) Niels Tuning (27)
Designing a CP violation experiment How do you obtain a pure ‘beam’ of K2 particles? It turns out that you can do that through clever use of kinematics Exploit that decay of K into two pions is much faster than decay of K into three pions Related to fact that energy of pions are large in 2-body decay t1 = 0.89 x 10-10 sec t2 = 5.2 x 10-8 sec (~600 times larger!) Beam of neutral Kaons automatically becomes beam of |K2> as all |K1> decay very early on… Pure K2 beam after a while!(all decaying into πππ) ! K1 decay early (into pp) Initial K0beam Niels Tuning (28)
The Cronin & Fitch experiment Essential idea: Look for (CP violating) K2 pp decays 20 meters away from K0 production point Decay of K2 into 3 pions Incoming K2 beam If you detect two of the three pionsof a K2 ppp decay they will generallynot point along the beam line Niels Tuning (29)
The Cronin & Fitch experiment Essential idea: Look for K2 pp decays20 meters away from K0 production point Decay pions Incoming K2 beam If K2 decays into two pions instead ofthree both the reconstructed directionshould be exactly along the beamline(conservation of momentum in K2 pp decay) Niels Tuning (30)
The Cronin & Fitch experiment Essential idea: Look for K2 pp decays20 meters away from K0 production point Decay pions K2 ppdecays(CP Violation!) Incoming K2 beam K2 ppp decays Result: an excess of events at Q=0 degrees! • CP violation, because K2 (CP=-1) changed into K1 (CP=+1) Note scale: 99.99% of K ppp decaysare left of plot boundary Niels Tuning (31)
Nobel Prize 1980 "for the discovery of violations of fundamental symmetry principles in the decay of neutral K mesons" The discovery emphasizes, once again, that even almost self evident principles in science cannot be regarded fully valid until they have been critically examined in precise experiments. James Watson Cronin 1/2 of the prize University of Chicago Chicago, IL, USA b. 1931 Val Logsdon Fitch 1/2 of the prize Princeton University Princeton, NJ, USA b. 1923 Niels Tuning (32)
Cronin & Fitch – Discovery of CP violation Conclusion: weak decay violates CP (as well as C and P) But effect is tiny! (~0.05%) Maximal (100%) violation of P symmetry easily follows from absence of right-handed neutrino, but how would you construct a physics law that violates a symmetry just a tiny little bit? Results also provides us withconvention-free definition ofmatter vs anti-matter. If there is no CP violation, the K2 decaysin equal amounts top+ e-ne (a)p- e+ne (b) Just like CPV introduces K2 ππ decays, it also introduces a slight asymmetry in the above decays (b) happens more often than (a) “Positive charge is the charged carried by the lepton preferentially produced in the decay of the long-lived neutral K meson” Niels Tuning (33)
strong interactions: must conserve strangeness leave little free energy – unlikely! Intermezzo: Regeneration • Different cross section for σ(p K0) thanσ(pK0) • Elastic scattering: same • Charge exchange : same • Hyperon production: more for K0 ! • What happens when KL-beam hits a wall ?? • Thenadmixture changes…: |KL> = p| K0> - q|K0> • Regeneration of KS ! • Could fake CP violation due to KS→π+π-… Niels Tuning (34)
KS and KL Usual (historical) notation in kaon physics: Modern notation used in B physics: Regardless of notation: KL and KSare not orthogonal: Niels Tuning (35)
Three ways to break CP; e.g. in K0→ π+π- Niels Tuning (36)
Classification of CP Violating effects • CP violation in decay • CP violation in mixing • CP violation in interference Niels Tuning (37)
Time evolution Niels Tuning (38)
B-system 2. CP violation in mixing K-system CPLEAR, Phys.Rep. 374(2003) 165-270 BaBar, (2002) CPLear (2003)
B-system 2. CP violation in mixing K-system BaBar, (2002) NA48, (2001) L(e) = (3.317 0.070 0.072) 10-3 Niels Tuning (40)
B-system 3.Time-dependent CP asymmetry B0→J/ψKs BaBar (2002) Niels Tuning (41)
B-system 3.Time-dependent CP asymmetry K-system K0→π-π+ B0→J/ψKs ~50/50 decay as Ks and KL + interference! K0 _ K0 p+p- rate asymmetry CPLear (PLB 1999) BaBar (2002)
The Quest for Direct CP Violation Indirect CP violation in the mixing: Direct CP violation in the decay: ’ A fascinating 30-year long enterprise: “Is CP violation a peculiarity of kaons? Is it induced by a new superweak interaction?” Niels Tuning (43)
B system 1. Direct CP violation K system K0→π-π+ K0→π-π+ B0→K+π- B0→K-π+ K0→π0π0 K0→π0π0 Different CP violation for the two decays Some CP violation in the decay! ε’≠ 0 Niels Tuning (44)
d Ks ~~ d g,b,…? s B s b t φ s Hints for new physics? 1) sin2β≠sin2β ? 2) ACP (B0K+π-)≠ACP (B+K+π0) ? 4th generation, t’ ? 3) βs≠0.04 ? 4) P(B0s→B0s) ≠ P(B0s←B0s) Niels Tuning (46)
Present knowledge of unitarity triangle Niels Tuning (47)
“The” Unitarity triangle • We can visualize the CKM-constraints in (r,h) plane