1 / 11

Approximate Integration

Approximate Integration. Materi 7.4 Bab. Integral Riemann Buku Intro. To Real Analysis. Kelompok 4: Pratiwi Nusi (P3500211008) Samsu Alam (P3500211010). Approximate Integration. Tujuan :. Memahami konsep pendekatan ( aproksimasi ) dalam pengintegalan .

ivo
Download Presentation

Approximate Integration

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Approximate Integration Materi 7.4 Bab. Integral Riemann Buku Intro. To Real Analysis Kelompok 4: PratiwiNusi (P3500211008) SamsuAlam (P3500211010)

  2. Approximate Integration Tujuan : • Memahamikonseppendekatan (aproksimasi) dalampengintegalan. • Memahamipendekatanpengintegralanberdasarkanpartisi yang sama. • Memahamibeberapateknikpendekatanpengintegralanmenggunakanaturan Trapezoid, aturan Midpoint danaturanSimpson.

  3. KonsepAproksimasi Prosedurdasardalammemperolehtaksiransecaracepatdarifungsiberdasarkanteorema 7.1.4(c) dapatdituliskanbahwajika maka Jikaintegral dari g dan h dapatdihitung, makadapatdiperolehbatasdari yang cukupakuratuntukkebutuhanpenaksiran Selainitujugadapatdilakukanpendekatanpengintegralandenganmenerapkanteorema Taylor padasuatu polynomial

  4. PendekatanPengintegralanberdasarkanpartisi yang sama dari kontinu, partisi dalam sub interval sama yang mempunyaipanjang Karenanyaadalahpartisi • Kemudiandenganmengambiltitikujungkiridankanan subinterval diperolehperkiraankiridankanan yang rata-ratanyadapatdinyatakansebagai:

  5. sehinggamenurutTeorema 7.4.1 Jika maka Monoton, dandiberikan

  6. MetodePendekatanPengintegralan A. Aturan Trapezoid B. Aturan Midpoint C. Aturan Simpson

  7. A. Aturan Trapezoid Misalkanfkontinupada[a, b]. Aturan Trapezoid untukmemperkirakanhasildari y x …

  8. B. Aturan Midpoint y Misalkanfkontinupada[a, b]. Aturan Midpoint untukmemperkirakanhasildari a … b

  9. C. Aturan Simpson Misalkanfkontinupada[a, b]. Aturan Simpson untukmemperkirakanhasildari y x …

  10. Contoh: (a) Trapezoidal Rule (b) Midpoint Rule (c) Simpson’s Rule

  11. Thank You Referensi:

More Related