1 / 52

Intermediate Algebra Chapter 8

Intermediate Algebra Chapter 8. Quadratic Equations. Willa Cather –U.S. novelist.

Download Presentation

Intermediate Algebra Chapter 8

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Intermediate AlgebraChapter 8 • Quadratic Equations

  2. Willa Cather –U.S. novelist • “Art, it seems to me, should simplify. That indeed, is very nearly the whole of the higher artistic process; finding what conventions of form and what detail one can do without and yet preserve the spirit of the whole – so that all one has suppressed and cut away is there to the reader’s consciousness as much as if it were in type on the page.

  3. Intermediate Algebra 8.1 • Special Methods

  4. Def: Quadratic Function • General Form • a,b,c,are real numbers and a not equal 0

  5. Solving Quadratic Equation #1 • Factoring • Use zero Factor Theorem • Set = to 0 and factor • Set each factor equal to zero • Solve • Check

  6. Solving Quadratic Equation #2 • Graphing • Solve for y • Graph and look for x intercepts • Can not give exact answers • Can not do complex roots.

  7. Solving Quadratic Equations #3Square Root Property • For any real number c

  8. Sample problem

  9. Sample problem 2

  10. Solve quadratics in the form

  11. Procedure • 1. Use LCD and remove fractions • 2. Isolate the squared term • 3. Use the square root property • 4. Determine two roots • 5. Simplify if needed

  12. Sample problem 3

  13. Sample problem 4

  14. Dorothy Broude • “Act as if it were impossible to fail.”

  15. Intermediate Algebra 8.1 Gay • Completing • the • Square

  16. Completing the square informal • Make one side of the equation a perfect square and the other side a constant. • Then solve by methods previously used.

  17. Procedure: Completing the Square • 1. If necessary, divide so leading coefficient of squared variable is 1. • 2. Write equation in form • 3. Complete the square by adding the square of half of the linear coefficient to both sides. • 4. Use square root property • 5. Simplify

  18. Sample Problem

  19. Sample Problem complete the square 2

  20. Sample problem complete the square #3

  21. Objective: • Solve quadratic equations using the technique of completing the square.

  22. Mary Kay Ash • “Aerodynamically, the bumble bee shouldn’t be able to fly, but the bumble bee doesn’t know it so it goes flying anyway.”

  23. Intermediate Algebra 8.2 • The • Quadratic • Formula

  24. Objective of “A” students • Derive • the • Quadratic Formula.

  25. Quadratic Formula • For all a,b, and c that are real numbers and a is not equal to zero

  26. Sample problem quadratic formula #1

  27. Sample problem quadratic formula #2

  28. Sample problem quadratic formula #3

  29. Pearl S. Buck • “All things are possible until they are proved impossible and even the impossible may only be so, as of now.”

  30. Methods for solving quadratic equations. • 1. Factoring • 2. Square Root Principle • 3. Completing the Square • 4. Quadratic Formula

  31. Discriminant • Negative – complex conjugates • Zero – one rational solution (double root) • Positive • Perfect square – 2 rational solutions • Not perfect square – 2 irrational solutions

  32. Sum of Roots

  33. Product of Roots

  34. CalculatorPrograms • ALGEBRAQUADRATIC • QUADB • ALG2 • QUADRATIC

  35. Harry Truman – American President • “A pessimist is one who makes difficulties of his opportunities and an optimist is one who makes opportunities of his difficulties.”

  36. Intermediate Algebra 8.4 • Quadratic Inequalities

  37. Sample Problem quadratic inequalities #1

  38. Sample Problem quadric inequalities #2

  39. Sample Problem quadratic inequalities #3

  40. Sample Problem quadratic inequalities #4

  41. Sample Problem quadratic inequalities #5

  42. Intermediate Algebra 8.5-8.6 • Quadratic Functions

  43. Orison Swett Marden • “All who have accomplished great things have had a great aim, have fixed their gaze on a goal which was high, one which sometimes seemed impossible.”

  44. Vertex • The point on a parabola that represents the absolute minimum or absolute maximum – otherwise known as the turning point. • y coordinate determines the range. • (x,y)

  45. Axis of symmetry • The vertical line that goes through the vertex of the parabola. • Equation is x = constant

  46. Objective • Graph, determine domain, range, y intercept, x intercept

  47. Parabola with vertex (h,k) • Standard Form

  48. Find Vertex • x coordinate is • y coordinate is

  49. Graphing Quadratic • 1. Determine if opens up or down • 2. Determine vertex • 3. Determine equation of axis of symmetry • 4. Determine y intercept • 5. Determine point symmetric to y intercept • 6. Determine x intercepts • 7. Graph

  50. Sample Problems - graph

More Related