630 likes | 809 Views
第 4 章 框架结构. 混凝土结构设计. 第 4 章 框架结构. 教材作者:梁兴文 课件制作:王 威 课件审查:周铁钢. 第 4 章 框架结构. 主要内容:. 结构组成和结构布置. 框架结构的计算简图及荷载. 竖向荷载作用下框架结构内力的近似计算. 水平荷载作用下框架结构内力和侧移的近似计算. 荷载效应组合和构件设计. 框架结构的构造要求. 重点:. 结构组成和结构布置. 框架结构的计算简图及荷载. 反弯点法,D值法. 第 4 章 内容要点. 第 4 章 框架结构. 1 结构组成及特点.
E N D
第4章 框架结构 混凝土结构设计 第 4 章 框架结构 教材作者:梁兴文 课件制作:王 威 课件审查:周铁钢
第4章 框架结构 主要内容: 结构组成和结构布置 框架结构的计算简图及荷载 竖向荷载作用下框架结构内力的近似计算 水平荷载作用下框架结构内力和侧移的近似计算 荷载效应组合和构件设计 框架结构的构造要求 重点: 结构组成和结构布置 框架结构的计算简图及荷载 反弯点法,D值法 第4章 内容要点
第4章 框架结构 1 结构组成及特点 框架结构(frame structure)由梁、柱构件通过节点连接构成,如整幢房屋均采用这种结构形式,则称为框架结构体系或框架结构房屋。 框架结构平面布置和剖面示意图 4.1结构组成和结构布置
第4章 框架结构 按施工方法不同,框架结构可分为现浇式、装配式和装配整体式三种。 (1)框架结构的受力特点 在竖向荷载和水平荷载作用下,框架结构各构件将产生内力和变形。框架结构的侧移一般由两部分组成:由水平力引起的楼层剪力,使梁、柱构件产生弯曲变形,形成框架结构的整体剪切变形us;由水平力引起的倾覆力矩,使框架柱产生轴向变形(一侧柱拉伸,另一侧柱压缩),形成框架结构的整体弯曲变形ub。 当框架结构房屋的层数不多时,其侧移主要表现为整体剪切变形,整体弯曲变形的影响很小。 4.1 结构组成和结构布置
第4章 框架结构 框架结构的侧移 4.1结构组成和结构布置
第4章 框架结构 (2)框架结构体系的优缺点 建筑平面布置灵活,能获得大空间(特别适用于商场、餐厅等),也 可按需要做成小房间; 建筑立面容易处理;结构自重较轻; 计算理论比较成熟; 在一定高度范围内造价较低。 框架结构的侧向刚度较小,水平荷载作用下侧移较大,有时会影响 正常使用;如果框架结构房屋的高宽比较大,则水平荷载作用下的侧移 也较大,而且引起的倾覆作用也较严重。 因此,设计时应控制房屋的高度和高宽比。 4.1 结构组成和结构布置
第4章 框架结构 2 结构布置(structural configuration) 框架结构布置主要是确定柱在平面上的排列方式(柱网布置)和选择结构承重方案,这些均必须满足建筑平面及使用要求,同时也须使结构受力合理,施工简单。 民用建筑柱网布置 4.1结构组成和结构布置
第4章 框架结构 框架结构的承重方案 1)横向框架承重。 主梁沿房屋横向布置,板和连系梁沿房屋纵向布置。 2)纵向框架承重。 主梁沿房屋纵向布置,板和连系梁沿房屋横向布置。 3)纵、横向框架承重。 房屋的纵、横向都布置承重框架 ,楼盖常采用现浇双向板或井字梁楼 盖。 4.1结构组成和结构布置
第4章 框架结构 框架结构的承重方案 4.1结构组成和结构布置
第4章 框架结构 在框架结构布置中,梁、柱轴线宜重合,如梁须偏心放置时,梁、柱中心 线之间的偏心距不宜大于柱截面在该方面宽度的1/4。如偏心距大于该方向柱宽的1/4时,可增设梁的水平加腋。 试验表明,此法能明显改善梁柱节承受反复荷载的性能。 梁端水平加腋处平面图 梁水平加腋厚度可取梁截面高度,其水平尺寸宜满足下列要求: bx / lx ≤ 1/2 , bx / bb ≤ 2/3 , bb + bx + x ≥ bc/2 4.1结构组成和结构布置
第4章 框架结构 梁水平加腋后,改善了梁柱节点的受力性能,故节点有效宽度 bj宜按下列规定取值: 当x = 0时,bj按下式计算: 当x≠0时,bj取下列二式计算的较大值: 且应满足bj ≤ bb + 0.5hc,其中hc为柱截面高度。 bj ≤ bb + bx bj ≤ bb + bx + x bj ≤ bb + 2x 4.1结构组成和结构布置
第4章 框架结构 1 框架结构的计算简图及荷载 梁、柱截面尺寸 框架梁、柱截面尺寸应根据承载力、刚度及延性等要求确定。初步设计时,通常由经验或估算先选定截面尺寸,以后进行承载力、变形等验算,检查所选尺寸是否合适。 梁截面尺寸确定 框架结构中框架梁的截面高度hb可根据梁的计算跨度lb、活荷载大等,按hb = (1/18~1/10)lb确定。为了防止梁发生剪切脆性破坏,hb不宜大于1/4净跨。主梁截面宽度可取bb = (1/3~1/2)hb,且不宜小于200mm。为了保证梁的侧向稳定性,梁截面的高宽比(hb/bb)不宜大于4。 4.2 框架结构的计算简图及荷载
第4章 框架结构 为了降低楼层高度,可将梁设计成宽 度较大而高度较小的 扁梁,扁梁的截面高 度可按 (1/18~1/15)lb 估算。扁梁的截面宽 度b(肋宽)与其高 度h的比值b/h不宜超 过3。 加腋梁 梁截面惯性矩 4.2 框架结构的计算简图及荷载
第4章 框架结构 柱截面尺寸 柱截面尺寸可直接凭经验确定,也可先根据其所受轴力按轴心 受压构件估算,再乘以适当的放大系数以考虑弯矩的影响。即 式中 Ac为柱截面面积;N为柱所承受的轴向压力设计值;Nv为 根据柱支承的楼面面积计算由重力荷载产生的轴向力值;1.25为重力 荷载的荷载分项系数平均值;重力荷载标准值可根据实际荷载取值, 也可近似按(12~14)kN/m2计算;fc为混凝土轴心抗压强度设计值。 Ac ≥ (1.1~1.2)N /fc N = 1.25Nv 4.2 框架结构的计算简图及荷载
第4章 框架结构 框架柱的截面宽度和高度均不宜小于300mm,圆柱截面直经 不宜小于350mm,柱截面高宽比不宜大于3。为避免柱产生剪切破 坏,柱净高与截面长边之比宜大于4,或柱的剪跨比宜大于2。 梁截面惯性矩 在结构内力与位移计算中,与梁一起现浇的楼板可作为 框架梁的翼缘,每一侧翼缘的有效宽度可取至板厚的6倍; 装配整体式楼面视其整体性可取等于或小于6倍;无现浇面层 的装配式楼面,楼板的作用不予考虑。 设计中,为简化计算,也可按下式近似确定梁截面惯性矩I: 4.2 框架结构的计算简图及荷载
第4章 框架结构 2 框架结构的计算简图 计算单元 框架结构的计算单元及计算模型 4.2 框架结构的计算简图及荷载
第4章 框架结构 框架结构房屋是空间结构体系,一般应按三维空间结构进行分析。 但对于平面布置较规则的框架结构房屋,为了简化计算,通常将实际 的空间结构简化为若干个横向或纵向平面框架进行分析,每榀平面框 架为一计算单元。 就承受竖向荷载而言,当横向(纵向)框架承重,且在截取横 向(纵向)框架计算时,全部竖向荷载由横向(纵向)框架承担,不 考虑纵向(横向)框架的作用。当纵、横向框架混合承重时,应根据 结构的不同特点进行分析,并对竖向荷载按楼盖的实际支承情况进行 传递,这时竖向荷载通常由纵、横向框架共用承担。 4.2 框架结构的计算简图及荷载
第4章 框架结构 框架结构计算简图 4.2 框架结构的计算简图及荷载
第4章 框架结构 在框架结构的计算简图中,梁、柱用其轴线表示,梁与柱之间的连接用节点(beam-column joints)表示,梁或柱的长度用节点间的距离表示,由图可见,框架柱轴线之间的距离即为框架梁的计算跨度;框架柱的计算高度应为各横梁形心轴线间的距离,当各层梁截面尺寸相同时,除底层外,柱的计算高度即为各层层高。对于梁、柱、板均为现浇的情况,梁截面的形心线可近似取至板底。对于底层柱的下端,一般取至基础顶面;当设有整体刚度很大的地下室;且地下室结构的楼层侧向刚度不小于相邻上部结构楼层侧向刚度的2倍时,可取至地下室结构的顶板处。 4.2 框架结构的计算简图及荷载
第4章 框架结构 在实际工程中,框架柱的截面尺寸通常沿房屋高度变化。当上层柱截面尺寸减小但其形心轴仍与下层柱的形心轴重合时,其计算简图与各层柱截面不变时的相同。当上、下层柱截面尺寸不同且形心轴也不重合时,一般采取近似方法,即将顶层柱的形心线作为整个柱子的轴线,但是必须注意,在框架结构的内力和变形分析中,各层梁的计算跨度及线刚度仍应按实际情况取;另外,尚应考虑上、下层柱轴线不重合,由上层柱传来的轴力在变截面处所产生的力矩。此力矩应视为外荷载,与其他竖向荷载一起进行框架内力分析。 4.2 框架结构的计算简图及荷载
第4章 框架结构 变截面柱框架结构的计算简图 4.2 框架结构的计算简图及荷载
第4章 框架结构 装配式框架的铰节点 框架柱与基础的连接 4.2 框架结构的计算简图及荷载
第4章 框架结构 框架结构上的荷载 作用在多、高层建筑结构上的荷载有竖向荷载和水平荷载。竖向荷载包括恒载和楼(屋)面活荷载,水平荷载包括风荷载和水平地震作用。 楼面活荷载 作用在多、高层框架结构上的楼面活荷载,可根据房屋及房间的不同用途按《荷载规范》取用。应该指出,《荷载规范》规定的楼面活荷载值,是根据大量调查资料所得到的等效均布活荷载(equivalent uniform live load)标准值,且是以楼板的等效均布活荷载作为楼面活荷载。 风荷载 当计算主要承重结构时,垂直于建筑物表面的风荷载标准值仍按式(3.5.9)计算,对于多、高层框架结构房屋,式中的计算参数应按规定 采用。 4.2 框架结构的计算简图及荷载
第4章 框架结构 1 竖向荷载作用下框架结构内力的近似计算 在竖向荷载(vertical load)作用下,多、高层框架结构的内力可用力法、位移法等结构力学方法计算。工程设计中,如采用手算,可采用迭代法、分层法、弯矩二次分配法及系数法等近似方法计算。 分层法 竖向荷载作用下框架结构的受力特点及内力计算假定: (1)不考虑框架结构的侧移对其内力的影响; (2)每层梁上的荷载仅对本层梁及其上、下柱的内力产生影响,对其他 各层梁、柱内力的影响可忽略不计。 应当指出,上述假定中所指的内力不包括柱轴力,因为某层梁上的 荷载对下部各层柱的轴力均有较大影响,不能忽略。 4.3 竖向荷载作用下框架结构内力的近似计算
第4章 框架结构 竖向荷载作用下分层计算示意图 4.3 竖向荷载作用下框架结构内力的近似计算
第4章 框架结构 分层法计算要点 (1)将多层框架沿高度分成若干单层无侧移的敞口框架,每个敞口框架包括本层梁和与之相连的上、下层柱。梁上作用的荷载、各层柱高及梁跨度均与原结构相同。 (2)除底层柱的下端外,其他各柱的柱端应为弹性约束。为便于计算,均将其处理为固定端。这样将使柱的弯曲变形有所减小,为消除这种影响,可把除底层柱以外的其他各层柱的线刚度乘以修正系数0.9。 4.3 竖向荷载作用下框架结构内力的近似计算
第4章 框架结构 (3)用无侧移框架的计算方法(如弯矩分配法)计算各敞口框架的杆端弯矩,由此所得的梁端弯矩即为其最后的弯矩值;因每一柱属于上、下两层,所以每一柱端的最终弯矩值需将上、下层计算所得的弯矩值相加。在上、下层柱端弯矩值相加后,将引起新的节点不平衡弯矩,如欲进一步修正,可对这些不平衡弯矩再作一次弯矩分配。 如用弯矩分配法计算各敞口框架的杆端弯矩,在计算每个节点周围各杆件的弯矩分配系数时,应采用修正后的柱线刚度计算;并且底层柱和各层梁的传递系数均取1/2,其他各层柱的传递系数改用1/3。 (4)在杆端弯矩求出后,可用静力平衡条件计算梁端剪力及梁跨中弯矩;由逐层叠加柱上的竖向荷载(包括节点集中力、柱自重等)和与之相连的梁端剪力,即得柱的轴力。 4.3 竖向荷载作用下框架结构内力的近似计算
第4章 框架结构 弯矩二次分配法 具体计算步骤: (1)根据各杆件的线刚度计算各节点的杆端弯矩分配系数,并计算竖向荷载作用下各跨梁的固端弯矩。 (2)计算框架各节点的不平衡弯矩,并对所有节点的不平衡弯矩同时进行第一次分配(其间不进行弯矩传递)。 (3)将所有杆端的分配弯矩同时向其远端传递(对于刚接框架,传递系数均取1/2)。 (4)将各节点因传递弯矩而产生的新的不平衡弯矩进行第二次分配,使各节点处于平衡状态。 至此,整个弯矩分配和传递过程即告结束。 (5)将各杆端的固端弯矩(fixed-end moment)、分配弯矩和传递弯矩叠加,即得各杆端弯矩。 4.3 竖向荷载作用下框架结构内力的近似计算
第4章 框架结构 系数法(Approximate analysis by coefficients) 采用上述两种方法计算竖向荷载作用下框架结构内力时,需首先确 定梁、柱截面尺寸,而且计算过程较为繁复。系数法是一种更简单的方 法,只要给出荷载、框架梁的计算跨度和支承情况,就可很方便地计算 出框架梁、柱各控制截面内力。 此法是《统一建筑规范》(Uniform Building Code)中介绍的方法, 在国际上被广泛采用。 4.3 竖向荷载作用下框架结构内力的近似计算
第4章 框架结构 水平荷载作用下框架结构的内力和侧移可用结构力学方法计算,常用的近似算法有迭代法、反弯点法、D值法和门架法等。 1 水平荷载作用下框架结构的受力及变形特点 2D值法 ( 1)层间剪力在各柱间的分配 该式即为层间剪力Vi在各柱间的分配公式,它适用于整个框架结构 同层各柱之间的剪力分配。可见,每根柱分配到的剪力值与其侧向刚度 成比例。 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 框架第2层脱离体图 (2)框架柱的侧向刚度——D值:一般规则框架中的柱 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 框架柱侧向刚度计算公式 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 称为柱的侧向刚度修正系数,它反映了节点转动降低了柱的侧向刚度,而节点转动的大小则取决于梁对节点转动的约束程度。 , 这表明梁线刚度越大,对节点的约束能力越强,节点转动越小,柱的侧向刚度越大。 现讨论底层柱的D值。 同理,当底层柱的下端为铰接时,可得 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 底层柱D值计算图式 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 柱高不等及有夹层的柱 不等高柱 夹层柱 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 柱的反弯点高度yh 反弯点高度示意图 框架各柱的反弯点高度比y可用下式表示: 式中:yn表示标准反弯点高度比; y1表示上、下层横梁线刚度变化时反弯点高度比的修正值; y2、y3表示上、下层层高变化时反弯点高度比的修正值。 y = yn + y1 + y2 + y3 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 (1)标准反弯点高度比yn。 yn是指规则框架的反弯点高度比。 标准反弯点位置简化求解 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 梁刚度变化时反弯点的修正 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第四章 框架结构 3 反弯点法 由上述分析可见,D值法考虑了柱两端节点转动对其侧向刚度和反弯 点位置的影响,因此,此法是一种合理且计算精度较高的近似计算方法, 适用于一般多、高层框架结构在水平荷载作用下的内力和侧移计算。 当梁的线刚度比柱的线刚度大很多时(例如ib/ic>3),梁柱节点的转角很小。如果忽略此转角的影响,则水平荷载作用下框架结构内力的计算方法,尚可进一步简化,这种忽略梁柱节点转角影响的计算方法称为反弯点法。 在确定柱的侧向刚度时,反弯点法假定各柱上、下端都不产生转动,即认为梁柱线刚度比为无限大。将趋近于无限大代入D值法 的公式,可得 =1。因此,由式可得反弯点法的柱侧向刚度,并用D0表示为: 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 同样,因柱的上、下端都不转动,故除底层柱外,其他各层柱的反 弯点均在柱中点(h/2);底层柱由于实际是下端固定,柱上端的约束刚 度相对较小,因此反弯点向上移动,一般取离柱下端2/3柱高处为反弯点 位置,即取yh= 用反弯点法计算框架结构内力的要点与D值法相同。 4 框架结构侧移的近似计算 水平荷载作用下框架结构的侧移(lateral displacement)如图所示, 它可以看作由梁、柱弯曲变形(flexural deformation)引起的侧移和由 柱轴向变形(axial deformation)引起的侧移的叠加。前者是由水平荷 载产生的层间剪力引起的,后者主要是由水平荷载产生的倾覆力矩引 起的。 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 (1)梁、柱弯曲变形引起的侧移 框架剪切变形 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第四章 框架结构 (2)柱轴向变形引起的侧移 框架弯曲变形 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 5 框架结构的水平位移控制 框架结构的侧向刚度过小,水平位移过大,将影响正常使用;侧向刚度过大,水平位移过小,虽满足使用要求,但不满足经济性要求。因此,框架结构的侧向刚度宜合适,一般以使结构满足层间位移限值为宜。 我国《高层规程》规定,按弹性方法计算的楼层层间最大位移与层高之比Δu/h宜小于其限值[Δu/h],即: [Δu/h]表示层间位移角限值,对框架结构取1/550;h为层高。 Δu/h ≤ [Δu/h] 由于变形验算属正常使用极限状态的验算,所以计算Δu时,各作用分项系数均应采用1.0,混凝土结构构件的截面刚度可采用弹性刚度。另外,楼层层间最大位移Δu以楼层最大的水平位移差计算,不扣除整体弯曲变形。 4.4 水平荷载作用下框架结构内力和侧移的近似计算
第4章 框架结构 1 荷载效应组合 (1)控制截面及最不利内力 框架柱控制截面最不利内力组合一般有以下几种: 1)|M|max及相应的N和V; 2)|N|max及相应的M和V; 3)Nmin及相应的M和V; 4)|V|max及相应的N。 这四组内力组合的前三组用来计算柱正截面受压承载力,以确定纵向 受力钢筋数量;第四组用以计算斜截面受剪承载力,以确定箍筋数量。 4.5 荷载效应组合和构件设计
第4章 框架结构 梁端的控制截面 4.5 荷载效应组合和构件设计
第4章 框架结构 (2)荷载的不利布置 框架杆件的变形曲线 活荷载最不利荷载布置法 4.5 荷载效应组合和构件设计
第4章 框架结构 (3)荷载效应组合(load effect combination) 对于高层框架结构,荷载效应组合的设计值应按下式确定: ——分别为楼面活荷载组合值系数和风荷载组合值系数, 当永久荷载效应起控制作用时应分别取0.7和0.0;当可变荷载 效应起控制作用时应分别取1.0和0.6或0.7和1.0。 4.5 荷载效应组合和构件设计