350 likes | 422 Views
Rendering Problem. L ászló Szirmay-Kalos. Image synthesis: illusion of watching real world objects. monitor. Tone mapping. pixel. S. f r ( ’ , x, ). W e ( x , ). . L e ( x , ). Color perception. . . Measuring the light: Flux. Power going through a boundary [Watt]
E N D
RenderingProblem László Szirmay-Kalos
Image synthesis: illusion of watching real world objects monitor Tone mapping pixel S fr (’, x, ) We(x,) Le(x,) Color perception
Measuring the light: Flux • Power going through a boundary [Watt] • Number of photons • Spectral dependence: F [, +d] F ()
g() r() b() 400 500 600 700 Color perception perception: r, g, b r, g, b
Perception of non-monochromatic light F () r=F () r () d F (i) r (i) i g=F () g () d b =F () b () d
Representative wavelengths Fe() F () Light propagation: Linear functional: F () = T(Fe()) r=F () r () d = F (i) r (i) i = r= T(Fe( i))r (i) i
Measuring the directions: 2D 2D case Direction: angle from a reference direction Directional set: angle [rad] arc of a unit circle Size: length of the arc Total size: 2
Measuring the directions: 3D Direction: angles , from two reference directions Directional set: solid angle [sr] area of a unit sphere Size: size of the area Total size: 4
Size of a solid angle d d d dw = sin d d sin d
Solid angle in which a surface element is visible dA r dw dA cos dw = r2
Radiance: L(x,w) • Emitted power of a unit visible area in a unit solid angle [Watt/ sr/ m2] w dw dF L(x,w) = dF / (dA cos dw) dA
Light propagation between two infinitesimal surfaces: Fundamental law of photometry ’ r L dw dA dA’ dF emitter receiver dA cos dA’ cos ’ dF = LdA cos dw = L r2
Symmetry relation of the source and receiver dA cos dA’ cos ’ dF = L =LdA’ cos ’dw’ r2 dw’ ’ r dA dw’ dA’ dF emitter receiver
Light-surface interaction w dw w’ x Probability density of the reflection w(w’,x,w) dw = Pr{photon goes to w dw | comes from w’}
Reflection of the total incoming light w dw Fin (dw’) Fref (dw) dw’ w’ x Fref (dw) = Fe (dw) + Fin (dw’) w(w’,x,w)dw
Rewriting for the radiance Fref (dw)= LdA cos dw Fe(dw)= LedA cos dw Fin(dw’)= LindA cos ’dw’ Visibility function h(x,-w) L(x,w) ’ Lin =L(h(x,-w’),w’) w ’ x
Substituting and dividing bydA cos dw w(’,x,) cos L(x,w)=Le(x,w)+L(h(x,-w’),w’) cos ’dw’ w ’ w(’,x,) cos = fr (’,x,) x Bidirectional Reflectance Distribution Function BRDF: fr (’,x,) [1/sr]
Rendering equation L(x,w)=Le(x,w)+L(h(x,-w’),w’) fr(’,x,) cos’dw’ L(h(x,-w),w) h(x,-w) L(x,w) ’ ’ w x fr (’,x,) L = Le + tL
Rendering equation • Fredholm integral equation of the second kind • Unknown is a function • Function space: Hilbert space, L2 space • scalar product: L = Le + tL <u(x,w),v(x,w)> = S u(x,w) v(x,w) cos dwdx
Function space • Linear space (vector space) • addition, zero, multiplication by scalars • Space with norms • ||u||2 = <u,u >, ||u||1 = <|u|,1>, • ||u|| = max|u|, • Hilbert space: scalar product: • L2 space: finite square integrals
Measuring the light: radiance • Sensitivity of a measuring device: We(y,w’) L(y,w’) ’ Light beam reaches the device: 0/1 „probability” We(y,w’): effect of a light beam of unit power emitted at y in direction w’ Scaling factor
Measured values • Single beam : F(dw’) We(y,w’) = L(y,w’)cos dAdw’ We(y,w’) • Total measured value:SWe(y,w’)dF=S L(y,w’)We(y,w’) cosdw’dy = < L, We > = ML
Simple eye model Pupil: e Pupil: e Wp Wp y ’ Lp pixel ’ y F r Computer screen F Real world Lp=F / (e cosqeWp) C=1 /(e cosqeWp)if y is visible in Wp and ’ points from y to e 0 otherwise We(y,’)=
Simple eye model: pinhole camera Pupil: e dw’= decose /r2 dy= r2dp/ cos Wp y ’ ’ y Pinhole camera: e, ’ 0 r Lp= ML =S L(y,w’)We(y,w’) cosdw’dy yL(y, w’) C· cos·’ · dy = p L(h(eye, wp ),-wp) C ·cos ·e cose /r2 · r2dp/cos = p L(h(eye, wp ),-wp) ·Ce cose dp Proportional to the radiance! Camera constant: 1 /Wp
Why radiance Lp= pL(h(eye, wp ),-wp) /Wpdp The color of a pixel is proportional to the radiance of the visible points and is independent of the distance and the orientation of the surface!! F=LDA cosdw /r2 pixel DA r2 / cos r
Integrating on the pixel Sp pixel p p f dp= dp cos p/|eye-p|2 = dp cos3p/f 2 dp/Wp dp / Sp
Integrating on the visible surface pixel y r dp= dy cos /|eye-y|2 = dy g(y)
Measuring function F= S L(y,w’)We(y,w’) cosdw’dy = = pL(h(eye, wp ),-wp) /Wpdp= = SL(y,w’) · cos /|eye-y|2 /Wpdy (w-wyeye)/|eye-y|2 /Wpif y is visible in the pixel 0 otherwise We(y,’)= g(y)
Potential: W(y,w’) • The direct and indirect effects in a measuring device caused by a unit beam from y at ’ • The product of scaling factor C and the probability that the photon emitted at y in ’ reaches the device w’ y
Duality of radiance and potential • Light propagation = emitter-receiver interaction • radiance: intensity of emission • potential: intensity of detection
Potential equation w’ y C · Pr{ detection} = C · Pr{ direct detection} + C · Pr{ indirect detection} Pr{ indirect detection} = Pr{ detection from the new point | reflection to w}· Pr{ reflection to w} dw
Potential equation W(y,w’)=We(y,w’)+W(h(y,w’),w) fr(’,h(y,w’),)cosdw y W(y,w’) w’ q fr (’,h(y,w’),) h(y,w’) W = We + ’W
Measuring the light: potential w’ y Fe(dw’) Measured values of a single beam = Fe(dw’)W(y,w’) = Le(y,w’)cos dAdw’ W(y,w’) Total measured value = M’W= S W(x,w)dFe=S Le(x,w) W(x,w) cosdwdx = < Le , W>
Operators of the rendering and potential equations • Measuring a single reflection of the light: • Adjoint operators: F1=< Le , W> = < Le , ’We > F1=< L, We> = < Le ,We > < Le , ’We > = < Le ,We >
Rendering problem: <S,Le,We ,fr> pixel S fr (’, x, ) Le(x,) We(x,) F= S We(x,w) dF=S L(x,w) We(x,w) cos dwdx F= ML