130 likes | 275 Views
Learn to estimate the area of irregular figures and to find the area of rectangles and parallelograms. Vocabulary. area. The area of a figure is the amount of surface it covers. We measure area in square units. 2. The area of the figure is about 30 mi.
E N D
Learn to estimate the area of irregular figures and to find the area of rectangles and parallelograms.
Vocabulary area
The area of a figure is the amount of surface it covers. We measure area in square units.
2 The area of the figure is about 30 mi . Additional Example 1: Estimating the Area of an Irregular Figure Find the area of the rectangle. Count full squares: 19 red squares. Count almost-full squares: 9 blue squares. Count squares that are about half-full: 4 green squares = 2 full squares. Do not count almost empty yellow squares. Add. 19 + 9 + 2 = 30
The area of the figure is about 18 mi2. Check It Out: Example 1 Estimate the are of the figure. Count full squares: 11 red squares. Count almost-full squares: 5 green squares. Count squares that are about half-full: 4 blue squares = 2 full squares. = mi2 Do not count almost empty yellow squares. Add. 11 + 5 + 2 = 18
A =lw A = 15 •9 A = 135 The area is about 135 in2. Additional Example 2: Finding the Area of a Rectangle Find the area of the figure. Write the formula. 15 in. Substitute 15 for l. 9 in. Substitute 9 for w.
A =lw A = 13 •7 A = 91 Check It Out: Example 2 Find the area of the figure. Write the formula. 13 in. Substitute 13 for l. 7 in. Substitute 7 for w. The area is about 91 in2.
You can use the formula for the area of a rectangle to write a formula for the area of a parallelogram. Imagine cutting off the triangle drawn in the parallelogram and sliding it to the right to form a rectangle. The area of a parallelogram = bh. The area of a rectangle = lw. The base of the parallelogram is the length of the rectangle. The height of the parallelogram is the width of the rectangle.
A = bh 1 __ 1 1 Substitute 2 for b and 1 for h. __ __ A = 2 •1 2 2 4 1 __ 4 5 5 __ __ A = • 2 4 25 1 ___ __ A = or 3 8 8 1 __ The area is 3 ft2. 8 Additional Example 3: Finding the Area of a Parallelogram Find the area of the parallelogram. Write the formula. 1 1 ft 4 1 2 ft 2 Multiply.
A = bh 1 3 ft 2 1 1 1 __ __ __ A = 1 •3 Substitute 1 for b and 3 for h. 2 2 2 1 __ 2 1 1 ft 3 7 __ __ 2 A = • 2 2 21 1 ___ __ A = or 5 4 4 1 __ The area is 5 ft2. 4 Check It Out: Example 3 Find the area of the parallelogram. Write the formula. Multiply.
To find the area to be tiled, subtract the area of the island from the area of the floor. 221 – 18 = 203 The area of the kitchen to be tiled is 203 ft2. Additional Example 4: Recreation Application Jessika is going to tile a kitchen that measures 13 ft by 17 ft. Some floor space is taken up by an island that measures 3 ft by 6 ft. How much area remains to be tiled in the kitchen? – = floor area island kitchen area to be tiled Substitute for l and w in A = lw. – = (13 • 17) (3 • 6) n Use the order of operations.
To find the landscaped area, subtract the area of the BBQ from the area of the backyard. 176 – 8 = 168 The area of the backyard to be landscaped is 168 ft2. Check It Out: Example 4 Miguel is going to landscape his backyard that measures 16 ft by 11 ft. Some of the backyard space is taken up by a built-in BBQ that measures 2 ft by 4 ft. How much area remains to be landscaped? – = backyard area BBQ landscaped area Substitute for l and w in A = lw. – = (16 • 11) (2 • 4) n Use the order of operations.