70 likes | 221 Views
May 16, 2012 for Shoshin Study Tour 2012 - Study Association Arago (the University of Twente , Netherlands). Division of Molecular Materials Science Research Center for Low Temperature and Materials Sciences, Kyoto University. Synthesis of Functional Materials
E N D
May 16, 2012 for ShoshinStudy Tour 2012 - Study Association Arago(the University of Twente, Netherlands) Division of Molecular Materials Science Research Center for Low Temperature and Materials Sciences, Kyoto University Synthesis of Functional Materials Structural Analysis & Physical Properties examination Design of New Materials http://mms.ltm.kyoto-u.ac.jp/index_e.html
1954 Organic Semiconductor 1980s: Organic Superconductors Q1D Superconductors max. Tc = 1.4 K (AP) 1960s 1D Organic Metals 2D Superconductors max. Tc = 12.3 K (AP) 1990s: 3D Molecular Superconductors max. Tc = 33 K (AP) History of Molecular Conductors Increment of Dimensionality Molecular Degree of Freedom Lattice point Simply a point Size Shape Functionality
Charge-Transfer Complex Formation Molecular Conductors for example Electro-oxidation To endow the electrical conductivity to molecular based materials, the charge-transfer complex is formed by treated with donor/ acceptor molecules or by electrochemical method. Metal-Insulator Transition
Distinct Molecular Deformation q1, q2: 6.0º , 0.3º planar: 0.8º, 2.1º bent: 11.1º, 7.9º Alternate Uniaxial 1+/0 Order-Disorder Peierls Charge Ordering (EDO-TTF)2PF6 — Above and Below TMI(280 K) from Bond Length 0.5+ Overlap Integral Uniform PF6 Rotation Isotropic Molecular Deformation is regarded as the Origin to Mix Metal-Insulator Transition Mechanisms (Multi-instability). (Overlap Integral 103) A. Ota et al., J. Mater. Chem., 12(9), 2600-2602 (2002)
Photo-Induced Phase Transition (PIPT) of (EDO-TTF)2PF6 Thermal Transition PIPT Time Delay Sample Probe (white light) 1.55 eV Pump (1.55 eV= 12.5 103 cm-1) 1.38 eV 1.70 eV Responce < 0.1 ps Relaxation to meta-stable state ≈ 1.5 ps Probe 1.70 eV (13.7 103 cm-1) Probe 1.38 eV (11.1 103 cm-1) 1.55 eV 1.38 eV 1.70 eV 1 photon / 50-500 molecules Ultra-fast & Highly Efficient PIPT Material M. Chollet et al., Science, 307, 86-89 (2005) [Erratum: 312, 697 (2006)] H. Yamochi, S. Koshihara, Sci. Technol. Adv. Mater., 10(2), 024305/1-6 (2009)
PI Process over 100 ps Three-level Rate Equation 100 psorder B: Thermally Induced Metal 10 psorder C: Charge Randomization + Photo Induced Carrier + ..... 0.1 - 1 ps <Recent Result> PIPT Route is Analyzed. Insulator Low Temp. Phase A: (1010) phaseFluctuated Charge Order N. Fukazawa et al., J. Phys. Chem. C, 116(9), 5892-5899 (2012)
Recent Publications ▪ ▪ ▪▪ ▪ many corroborations with other laboratories & the derivatives 213. T. Hiramatsuet al., Physica Status Solidi C, 9(5), 1155-1157 (2012) 212. M. Ishikawa et al.,Physica Status Solidi C, 9(5), 1143-1145 (2012 209. N. Fukazawa et al., J. Phys. Chem. C, 116(9), 5892-5899 (2012) 204. K. Ondaet al., Physica B, 405(11), S350-S352 (2010) 202. X.F. Shao et al., Physica B, 405(11), S75-S78 (2010) 199. T. Murata et al., PhysicaB, 405(11), S45-S48 (2010) (C60) Materials 208. D.V. Konarevet al., Inorg. Chem., 51(6), 3420–3426 (2012) 207. D.V. Konarevet al., New J. Chem., 35(9), 1829-1835 (2011) 197. D.V. Konarev et al., Inorg. Chem., 49(8), 3881–3887 (2010) Other Materials 211. H. Yamochi et al., Physica Status Solidi B, 249(5), 1012-1016 (2012) 210. T Ishikawa et al., J. Phys.: Condens. Matter, 24(19), 195501/1-9 (2012) 206. T. Hanedaet al., J. Mater. Chem., 21(5), 1621-1626 (2011) 205. G. Saito et al., Bull. Chem. Soc. Jpn., 83(12), 1462–1480 (2010) 203. Y. Nakano et al., Physica B, 405(11), S198-S201 (2010) 201. T. Shirahataet al., Physica B, 405(11), S61-S64 (2010) 200. Y. Nakano et al., PhysicaB, 405(11), S49-S54 (2010)