1 / 19

Chapter 16

Chapter 16. Option Valuation. Option Values. Intrinsic value - payoff that could be made if the option was immediately exercised Call: stock price - exercise price Put: exercise price - stock price Time value - the difference between the option price and the intrinsic value.

jackie
Download Presentation

Chapter 16

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter16 Option Valuation

  2. Option Values • Intrinsic value - payoff that could be made if the option was immediately exercised • Call: stock price - exercise price • Put: exercise price - stock price • Time value - the difference between the option price and the intrinsic value

  3. Time Value of Options: Call Option value Value of Call Intrinsic Value Time value X Stock Price

  4. Factors Influencing Option Values: Calls FactorEffect on value Stock price increases Exercise price decreases Volatility of stock price increases Time to expiration increases Interest rate increases Dividend yield decreases

  5. A Simple Binomial Model • A stock price is currently $20 • In three months it will be either $22 or $18 Stock Price = $22 Stock price = $20 Stock Price = $18

  6. A Call Option A 3-month call option on the stock has a strike price of 21. Stock Price = $22 Option Price = $1 Stock price = $20 Option Price=? Stock Price = $18 Option Price = $0

  7. 22D – 1 18D Setting Up a Riskless Portfolio • Consider the Portfolio: long D shares short 1 call option • Portfolio is riskless when 22D – 1 = 18D or D = 0.25

  8. Valuing the Portfolio(Risk-Free Rate is 12%) • The riskless portfolio is: long 0.25 shares short 1 call option • The value of the portfolio in 3 months is 22´0.25 – 1 = 4.50 • The value of the portfolio today is 4.5e– 0.12´0.25 = 4.3670

  9. Valuing the Option • The portfolio that is long 0.25 shares short 1 option is worth 4.367 • The value of the shares is 5.000 (= 0.25´20 ) • The value of the option is therefore 0.633 (= 5.000 – 4.367 )

  10. Example: • Suppose the stock now sells at $100, and the price will either double to $200 or fall in half to $50 by the year-end. A call option on the stock might specify an exercise price of $125 and a time to expiration of one year. The interest rate is 8%. What is the option price today?

  11. Black-Scholes Option Valuation Co= Soe-dTN(d1) - Xe-rTN(d2) d1 = [ln(So/X) + (r – d + s2/2)T] / (s T1/2) d2 = d1 - (s T1/2) where Co = Current call option value. So= Current stock price N(d) = probability that a random draw from a normal dist. will be less than d.

  12. Black-Scholes Option Valuation X = Exercise price. d = Annual dividend yield of underlying stock e = 2.71828, the base of the nat. log. r = Risk-free interest rate (annualizes continuously compounded with the same maturity as the option. T = time to maturity of the option in years. ln = Natural log function s = Standard deviation of annualized cont. compounded rate of return on the stock

  13. Call Option Example So = 100 X = 95 r = .10 T = .25 (quarter) s = .50 d = 0 d1 = [ln(100/95)+(.10-0+(.5 2/2))]/(.5.251/2) = .43 d2 = .43 - ((.5)( .251/2) = .18

  14. Probabilities from Normal Dist. N (.43) = .6664 Table 17.2 d N(d) .42 .6628 .43 .6664 Interpolation .44 .6700

  15. Probabilities from Normal Dist. N (.18) = .5714 Table 17.2 d N(d) .16 .5636 .18 .5714 .20 .5793

  16. Call Option Value Co= Soe-dTN(d1) - Xe-rTN(d2) Co = 100 X .6664 - 95 e- .10 X .25 X .5714 Co = 13.70 Implied Volatility Using Black-Scholes and the actual price of the option, solve for volatility. Is the implied volatility consistent with the stock?

  17. Put Option Value: Black-Scholes P=Xe-rT [1-N(d2)] - S0e-dT [1-N(d1)] Using the sample data P = $95e(-.10X.25)(1-.5714) - $100 (1-.6664) P = $6.35

  18. Put Option Valuation: Using Put-Call Parity P = C + PV (X) - So = C + Xe-rT - So Using the example data C = 13.70 X = 95 S = 100 r = .10 T = .25 P = 13.70 + 95 e -.10 X .25 - 100 P = 6.35

  19. Exercise in class The stock price of Ajax Inc. is currently $105. The stock price a year from now will be either $130 or $90 with equal probabilities. The interest rate at which investors can borrow is 10%. Using the binomial OPM, the value of a call option with an exercise price of $110 and an expiration date one year from now should be worth __________ today. A) $11.60 B) $15.00 C) $20.00 D) $40.00 The stock price of Bravo Corp. is currently $100. The stock price a year from now will be either $160 or $60 with equal probabilities. The interest rate at which investors invest in riskless assets at is 6%. Using the binomial OPM, the value of a put option with an exercise price of $135 and an expiration date one year from now should be worth __________ today. A) $34.09 B) $37.50 C) $38.21 D) $45.45

More Related