400 likes | 582 Views
TOPS, MIT, Cambridge, June 24 th , 2009. Pairs and Loners in Ultracold Fermi Gases. Martin Zwierlein. Massachusetts Institute of Technology Center for Ultracold Atoms at MIT and Harvard $$$: NSF, AFOSR- MURI, Sloan Foundation. Bosons vs Fermions. E F. Bosons. Fermions.
E N D
TOPS, MIT, Cambridge, June 24th, 2009 Pairs and Loners inUltracold Fermi Gases Martin Zwierlein Massachusetts Institute of Technology Center for Ultracold Atoms at MIT and Harvard $$$: NSF, AFOSR- MURI, Sloan Foundation
Bosons vs Fermions EF Bosons Fermions e.g.: e-, 3He, 6Li, 40K e.g.: 1H, 23Na, 6Li2
Degenerate gases de Broglie wavelength ~ Interparticle spacing Want lifetime > 1s Ultradilute Ultracold Good news: Bosons condense at
Effusive beam Effusive atomic beam Gas How to measure temperature?
Effusive beam Effusive atomic beam Gas How to measure temperature?
Observation of the atom cloud Trapped Expanded Lens Atom cloud CCDCamera Laser beam Shadow imageof the cloud 1 mm
BEC phase transition BEC @ MIT, 1995 (Sodium)
Superfluidity in Bosonic Gases BEC @ JILA, Juni ‘95(Rubidium) BEC @ MIT, Sept. ‘95 (Sodium) ENS • Superfluidity 1999/2000Frictionless flow,quantized vorticity MIT JILA • BEC 1995All atoms occupy samemacroscopic wavefunction MIT • Phase coherence 1997
Fermions – The Building Blocks of Matter Lithium-6 Harvard-Smithsonian Center for Astrophysics
1911: Discovery of Superconductors • Discovery of Superconductivity in Metals HeikeKamerlingh-Onnes Resistance Temperature Nobel prize 1913
Superfluids Superconductors Flow without friction Current without resistance • No energy loss • persistent currents • expels magnetic fields • No energy loss • persistent flow • Doesn’t want to rotate Onnes 1911Müller & Bednorz 1987 Onnes 1908,Kapitza, Allen & Misener 1938
What are superconductors? • Apparently the electrical current flows without friction • But: Carrier of electrical current are Electrons Electrons are Fermions
What are superconductors? • Apparently the electrical current flows without friction • But: Carrier of electrical current are Electrons Electrons are Fermions L. Cooper (1956) (45 years after Onnes): Pairing of electronsPairs are Bosons Superconductivity: Condensation of Electron Pairs J. Bardeen, L. Cooper, R. Schrieffer (BCS), 1957, Nobel prize 1972
Fermionic Superfluidity John Bardeen Leon N. Cooper John R. Schrieffer Condensation of Fermion Pairs Superconductors: Charged superfluids of electron pairs Frictionless flow Resistance-less current
High-temperature Superconductors J. Georg Bednorz K. Alex Müller Critical temperature: 35 K above Absolute Zero (-238 °C) Record today: 138 K (-135 °C) Nobel prize 1987
Room temperature superconductors? • Today: • ~5-10% energy loss only due to transport of energy • The hope: • Superconducting cables • No resistance No energy loss during transport We need: A model system for superconductors Ultracold atomic gases The problem: High-temperature superconductivity not really understood Electrons interact so strongly that it’s hard to model
Can we do this with atoms? YES! The ultracold Fermi gas at MIT: • Lithium-6 (3p, 3n, 3e-) is a fermion • The atoms form pairs likeelectrons in a superconductor • Size of pairs isfreely controllable • The gas becomes superfluid
Rotating buckets • Rotating bucket Super Normal Fluid Fluid
Rotating superfluid Superfluid does not want to rotate Only possibility:Vortices, “Mini-Tornados”, “Quantum whirlpools” Superfluids are described by matter wave The wave has to close in itself(Example: Vibrating rubber band) Only full wavelengths lare allowed Circulation is only possible in certainunits (“Quanta”), carried by the Vortices
Vortex structure Look from top into the bucket
Vortex structure Look from top into the bucket Aleksei A. Abrikosov Nobel prize 2003 Abrikosov lattice (honeycomb lattice)
Vortex latticesin bosonic gases/fluids Berkeley (R.E. Packard, 1979) Helium-4 ENS (J. Dalibard, 2000) Rubidium BEC
Rotation of a neutral Fluid Coriolis Force Superconductor in a magnetic field Lorentz Force U. Essmann and H. Träuble,Physics Letters A, 24, 526 (1967)
Demonstration of superfluidity in a Fermi gas Ultracold gas
Vortices in the BEC-BCS Crossover Vortex lattices • Demonstration of superfluidity in a gas of atom pairs • A high-temperature superfluid - 0.7 B Pair size Scaled to the density of electrons in a metal, the gaswould become superfluid far above room temperature M.W. Zwierlein, J.R. Abo-Shaeer, A. Schirotzek, C.H. Schunck, W. Ketterle, Nature 435, 1047-1051 (2005)
Fermionic Superfluidity withImbalanced Spin Populations What if there are too many singles?
Fermionic Superfluidity with Imbalanced Spin Populations |1> |2> 0% 6% 12% 22% 30% 56% 90% 94%
What is the Nature of the Imbalanced State?
Direct observation of the density difference Cooling Down Normal Superfluid Y. Shin, M.W. Zwierlein, C.H. Schunck, A. Schirotzek, W. Ketterle, PRL 97, 030401 (2006)
Reconstruction of 3D density profile Only assumption: cylindrical symmetry d = 0.6 Phase Separation ! Fermionic Superfluidity does not tolerate loners
Gallery of superfluid Gases Atomic Bose-EinsteinCondensates (Sodium) Molecular Bose-EinsteinCondensates (6Li2) Pairs of fermionic atoms(6Li)
Ultracold Atoms As Model systems: • How does matter work?new quantum states,development of new materialsQuantum computer, Quantum simulators (Bose and Fermi gases) As measuring device: • Development of highly sensitive sensors gravitational gradient sensors (important for mining, geophysics),sensors for navigation • New highly accurate atomic clocks as time standardbasis of all GPS-systems, more accurate positioning, faster telecommunication requires accurate clocks
The team BEC 1: Andre Schirotzek Ariel Sommer Fermi 1: Cheng-Hsun Wu Ibon Santiago Dr. Peyman Ahmadi Undergraduates: Caroline Figgatt Jacob Sharpe Sara Campbell Kevin Fischer 39K 40K 6Li