240 likes | 589 Views
Fingerprint Analysis (part 1) Pavel Mr ázek. What is fingerprint. Ridges, valleys Singular points Core Delta Orientation field Ridge frequency. Fingerprint classes. Small scale: Minutia. 150 types in theory 7 used by human experts 2 types for the machine: Ending Bifurcation.
E N D
Fingerprint Analysis (part 1) Pavel Mrázek
What is fingerprint • Ridges, valleys • Singular points • Core • Delta • Orientation field • Ridge frequency
Small scale: Minutia • 150 types in theory • 7 used by human experts • 2 types for the machine: • Ending • Bifurcation
Sensing Traditional (off line): rolled ink impression+ paper scan • Plus: big area • Minuses: • Inconvenient • Distortion • Too much/little ink
Sensing Optical sensors
Sensing Optical sensors • Good: large area possible, good image quality, contactless scanning available • Bad: size
Sensing Silicon sensors • Capacitive • Electric field • Thermal
Sensing Silicon sensors • Good image quality, small form factor • Price proportional to size
Sensing Silicon sensors • Area • Swipe
Orientation field Orientation field (or ridge flow) estimation: • Crucial step before image enhancement • Various methods: • Gradient-based • Gabor filters • FFT
Orientation estimation • Gradient direction • local characteristics • same ridge orientation, opposite gradients • more global view needed • Classical solution: Structure tensor(second moment matrix, interest operator) • start from a 2x2 matrix(positive semidefinite) • safe to average information
Orientation estimation Structure tensor • Local: • Larger scale: average componentwise(Gaussian window, linear/nonlinear smoothing) • 2 nonnegative eigenvalues • both small: backgroung / low contrast • one big, one small: regular ridge area • both big: multiple orientations (core, delta, scar)
Orientation estimation Structure tensor • system of 2 orthogonal eigenvectors • shows dominant direction
Orientation estimation • Problematic images • Solution • Enforce smoothness • Use prior knowledge
References • Maltoni et al.: Handbook of Fingerprint Recognition. Springer 2003. • Maltoni. A tutorial on fingerprint recognition. In LNCS 3161, Springer 2005. • Hong, Wan, Jain. Fingerprint image enhancement: algorithm and performance evaluation. IEEE PAMI 1998. • Zhou, Gu. A model-based method for the computation of fingerprints’ orientation field. IEEE TIP 2004. • Weickert. Coherence enhancing shock filters. DAGM 2003. • Contact: mrazekp -at- cmp.felk.cvut.cz