1 / 20

Fractional Representations Presented by: Sherilyn Stratton, Carnegie Learning

You Mean Three Can Be One?. Fractional Representations Presented by: Sherilyn Stratton, Carnegie Learning. Goals for the Day. To deepen your own understanding of fraction and their operations. To develop your mathematical reasoning and problem solving capabilities.

jacoba
Download Presentation

Fractional Representations Presented by: Sherilyn Stratton, Carnegie Learning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. You Mean Three Can Be One? Fractional RepresentationsPresented by: Sherilyn Stratton, Carnegie Learning

  2. Goals for the Day • To deepen your own understanding of fraction and their operations. • To develop your mathematical reasoning and problem solving capabilities. • To provide you with opportunity to reflect on and develop your own teaching practice.

  3. The Whole: Yellow Hexagon • Start with the yellow hexagon. • Cover the hexagon with other pattern block pieces. • Record your design. • Repeat the process to create as many representations as possible.

  4. The Whole: Yellow Hexagon • How many different designs can you create? How did you know you determined all of the combinations? • Write fraction number sentences to describe each of your designs.

  5. The Whole: Triple Hexagon • Create the whole: On a blank sheet of pattern block paper, put 3 hexagons together to form a “triple hexagon”. Trace around your triple hexagon shape(s). • Determine what fractional part each pattern block shape represents: • Hexagon • Trapezoid • Rhombus • Triangle

  6. The Whole: Large Hexagon • Cover the large hexagon using one or more trapezoids, rhombi, triangles, and hexagons. • Use each shape at least once. • Draw the result on the hexagon. • Label each part with a fraction.

  7. How is this possible? • From her work with pattern blocks in third grade, Lynn always thought that the trapezoid was called . But when she made her triple hexagon, the trapezoid wasn’t called anymore! What happened? How is this possible?

  8. How is this possible? • Lynn was trying to figure out which was larger, or . “My third grade teacher said that in fractions, larger is smaller and smaller is larger, so is larger than .”

  9. How is this possible? But then she looked at the three pattern block problems she just did. “The hexagon is and the trapezoid is . The hexagon is bigger than the trapezoid. So, IS larger than . I knew larger couldn’t be smaller!” What happened? How is this possible?

  10. Fractional Names of Pattern Block Pieces

  11. With a partner describe any patterns you notice in the table and explain why you think the patterns exist.

  12. Determine the fractional part of each piece if the whole is now a Mega-Hexagon (equivalent to 7 hexagons).

  13. Determine the fractional part of each pattern block piece if the whole is now a trapezoid.

  14. Determine the fractional part of each piece if the whole is now a rhombus.

  15. Determine the fractional part of each piece if the whole is now a triangle.

  16. Describe the patterns that you see in the table.

  17. Mathematical Practices Describe ways in which you can connect the mathematical practices to the essential ideas of these tasks.

  18. Deepening Mathematical Understanding Software Connections

  19. Reports for further intervention

  20. Looking at Reports • Overview provides you with a summary of the tools and strategies needed to monitor and sustain an effective software implementation.

More Related