130 likes | 243 Views
ECEN3713 Network Analysis Lecture #13 21 February 2006 Dr. George Scheets. Exam 1 Results: Hi = 95, Low = 25, Ave. = 60.14, StanDev = 21.18 A > 90, B > 77, C > 55, D > 40 Read Chapter 13.8, 14.1 - 14.3 Problems: 13.14, 13.38, 13.84, 14.1 Thursday's Quiz
E N D
ECEN3713 Network AnalysisLecture #13 21 February 2006Dr. George Scheets Exam 1 Results: Hi = 95, Low = 25, Ave. = 60.14, StanDev = 21.18A > 90, B > 77, C > 55, D > 40 • Read Chapter 13.8, 14.1 - 14.3 • Problems: 13.14, 13.38, 13.84, 14.1 • Thursday's Quiz • 1st or 2nd Order Circuits with initial conditions Thursday's AssignmentProblems: 14.2 - 14.5
ECEN3713 Network AnalysisLecture #15 28 February 2006Dr. George Scheets Quiz 4 Results: Hi = 10, Low = 2, Ave. = 6.62, StanDev = 2.40 • Read Chapter 14.4 • Problems: 14.7, 14.9, 14.10, 14.13 • Thursday's Quiz • Chapter 14.1 – 14.4 Thursday's AssignmentProblems: 14.14 - 14.16, 14.19
10.2 Im x t -1 Re x V(s) = 10s/(s2+2s+25) v(t) = 10.2e-tcos(4.899t + .0641π) Stability Issues: Underdamped Location of poles on Real axis sets decay rate. Location of poles on Imagninary axis sets oscillation rate.
v(t) 100 Im t .001 x x -5000 Re V(s) = (100s + 106)/(s + 5000)2 v(t) = 500,000te-5000t + 100e-5000t Stability Issues: Critically damped Location of poles on Real axis sets decay rate.
v(t) .5 t .002 V(s) = 105/(s2 + 2*105s + 108) v(t) = .5025(e-500t - e-199,500t) Stability Issues: Overdamped No complex poles = no oscillation. Location of poles on real axis sets decay rate. Im x x Re -199,500 -500
1.5 0 -1.5 1.0 0 1.5 0 -1.5 1.0 0 Generating a Square Wave... 1 vp 5 Hz 1/3 vp 15 Hz
Generating a Square Wave... 1.5 5 Hz+ 15 Hz 0 -1.5 1.0 0 1.5 1/5 vp 25 Hz 0 -1.5 1.0 0
Generating a Square Wave... 5 Hz+ 15 Hz + 25 Hz 1.5 0 -1.5 1.0 0 1.5 1/7 vp 35 Hz 0 -1.5 1.0 0
Generating a Square Wave... 5 Hz+ 15 Hz + 25 Hz + 35 Hz 1.5 0 -1.5 1.0 0 cos2*pi*5t - (1/3)cos2*pi*15t + (1/5)cos2*pi*25t - (1/7)cos2*pi*35t) 5 cycle per second square wave generated using 4 sinusoids
Generating a Square Wave... 1.5 0 -1.5 1.0 0 5 cycle per second square wave generated using 50 sinusoids.
Generating a Square Wave... 1.5 0 -1.5 1.0 0 5 cycle per second square wave generated using 100 sinusoids.
∞ X(f) = x(t) e-j2πft dt Fourier -∞ Transforms ∞ Laplace X(s) = x(t) e-st dt 0-