350 likes | 719 Views
Quaternion and Virtual Trackball. CSE 781 Introduction to 3D Image Generation Han-Wei Shen Winter 2007. y. y. y. x. x. x. z. z. z. Euler Rotation Problems. Gimbal Lock – lose one degree of freedom Problem happens when the axes of rotation line up on top of each other. For example: .
E N D
Quaternion and Virtual Trackball CSE 781 Introduction to 3D Image Generation Han-Wei Shen Winter 2007
y y y x x x z z z Euler Rotation Problems • Gimbal Lock – lose one degree of freedom • Problem happens when the axes of rotation line up on top of each other. For example: Step one: Rotate(0, 0,0,1) Step2: Rotate(90, 0,1,0) Step 3: Rotate(??, 0,0,1) This is same as rotation x !!
y x Euler Rotation Problems • Rotations with Euler angles to change from one orientation to another are not unique. Example: (x,y,z) rotation to achieve the following: R R x y y OR z z x z x R z y R z y Rotate(180, 1,0,0) Rotate(180, 0,1,0) then Rotate(180,0,0,1) Euler angles: (0,0,0) -> (180,0,0) Euler angles: (0,0,0) -> (0,180,180)
Quaternion • Invented in 1843 as an extension to the complex numbers • Used by computer graphics since 1985 • Quaternion: • Provide an alternative method to specify rotation • Can avoid the gimbal lock problem • Allow unique, smooth and continuous rotation interpolations
Mathematical Background • A quaternion is a 4-tuple of real number, which can be seen as a vector and a scalar Q = [qx, qy, qz, qw] = qv + qw, where qw is the real part and qv = iqx + jqy + kqz = (qx, qy, qz)is the imaginary part • i*i = j*j = k*k = -1; • j*k= -k*j= i; k*i=-i*k=j; i*j=-j*i= k; • All the regular vector operations (dot product, cross product, scalar product, addition, etc) applied to the imaginary part qv
Basic Operations • Multiplication: QR = (qv x rv+ rwqv+ qwrv, qwrw - qv.rv) • Addition: Q+R = (qv+rv, qw+rw) • Conjugate: Q* = (-qv, qw) • Norm (magnitude) = QQ* = Q*Q = qx*qx+qy*qy+qz*qz+qw*qw • Identity i = (0,1) • Inverse Q = (1/ Norm(Q)) Q* • Some more rules can be found in the reference book (real time rendering) pp46 Imaginary real -1
Polar Representation • Remember a 2D unit complex number cosq + i sinq = e • A unit quaternion Q may be written as: Q = (sinfuq , cosf) = cosf + sinfuq, where uq is a unit 3-tuple vector • We can also write this unit quaternion as: Q = e iq uqf
Quaternion Rotation • A rotation can be represented by a unit quaternion Q = (sinfuq, cosf) • Given a point p = (x,y,z) -> we first convert it to a quaternion p’ = ix+jy+kz+ 0 = (pv, 0) • Then, Qp’Q is in fact a rotation of p around uq by an angle 2f !! -1
Rotation Concatenation • Concatenation is easy – just multiply all the quaternions Q1, Q2, Q3, …. Together • There is a one-to-one mapping between a quaternion rotation and 4x4 rotation matrix. (Q3 (Q2 ( Q1 P’ Q1 ) Q2 ) Q3 ) = (Q3*Q2*Q1) P’ (Q1*Q2*Q3 ) -1 -1 -1 -1 -1 -1
Quaternion to Rotation Matrix • Given a quaternion w + xi +yj + kz, it can be translated to the rotation matrix R: 1-2y^2-2z^2 2xy+2wz 2xz-2wy R = 2xy-2wz 1-2x^2-2z^2 2yz+2wx 2xz+2wy 2yz-2wx 1-2x^2-2y^2 • Also you can convert a matrix to quaternion (see the reference book for detail)
Interpolation of Rotation • Should avoid sudden change of orientation and also should maintain a constant angular speed • Each rotation can be represented as a point on the surface of a 4D unit sphere • Need to perform smooth interpolation along this 4D sphere R How to interpolate A and B to get R? A B
Interpolation Rotation • Spherical Linear Interpolation (slerp): Given two unit quaternion (i.e., two rotations), we can create a smooth interpolation using slerp: slerp(Q1, Q2, t) = sin (f(1-t)) sin(ft) sinf sinf where 0<=t<=1 • To compute f, we can use this property: cosf = Q1xQ2x+Q1yQ2y+Q1zQ2z+Q1wQ2w Q1+ Q2
glRotatef(q, 0,1,0) glRotatef(q, 1,0,0) OpenGL - glRotatef(q, 0,0,1) 3D Rotations with Euler Angles • A simple but non-intuitive method – specify separate x, y, z axis rotation angles based on the mouse’s horizontal, vertical, and diagonal movements cos(q) -sin(q) 0 0 sin(q) cos(q) 0 0 0 0 1 0 0 0 0 1 cos(q) 0 sin(q) 0 0 1 0 0 -sin(q) 0 cos(q) 0 0 0 0 1 1 0 0 0 0 cos(q) -sin(q) 0 0 sin(q) cos(q) 0 0 0 0 1
y y x y x x z z Euler Rotation Problems • Gimbal Lock – lose one degree of freedom • Problem happens when the axes of rotation line up on top of each other. For example: z Step one: Rotate(0, 1,0,0) Step2: Rotate(90, 0,1,0) Step 3: Rotate(??, 0,0,1) This is same as rotation x !!
3D Rotations with Trackball • Imagine the objects are rotated along with a imaginary hemi-sphere
Virtual Trackball • Allow the user to define 3D rotation using mouse click in 2D windows • Work similarly like the hardware trackball devices
Virtual Trackball • Superimpose a hemi-sphere onto the viewport • This hemi-sphere is projected to a circle inscribed to the viewport • The mouse position is projected orthographically to this hemi-sphere z y (x,y,0) x
z y x Virtual Trackball • Keep track the previous mouse position and the current position • Calculate their projection positions p1 and p2 to the virtual hemi-sphere • We then rotate the sphere from p1 to p2 by finding the proper rotation axis and angle • This rotation ( in eye space!) is then applied to the object (call the rotation before you define the camera with gluLookAt()) • You should also remember to accumulate the current rotation to the previous modelview matrix
z y x Virtual Trackball • The axis of rotation is given by the normal to the plane determined by the origin, p1 , and p2 • The angle between p1 and p2 is given by n = p1 p1 | sin q| =
z y (x,y,0) x Virtual Trackball • How to calculate p1 and p2? • Assuming the mouse position is (x,y), then the sphere point P also has x and y coordinates equal to x and y • Assume the radius of the hemi-sphere is 1. So the z coordinate of P is • Note: normalize viewport y extend to -1 to 1 • If a point is outside the circle, project it to the nearest point on the circle (set z to 0 and renormalize (x,y))
Virtual Trackball Visualization of the algorithm
Example • Example from Ed Angel’s OpenGL Primer • In this example, the virtual trackball is used to rotate a color cube • The code for the colorcube function is omitted • I will not cover the following code, but I am sure you will find it useful
Initialization #define bool int /* if system does not support bool type */ #define false 0 #define true 1 #define M_PI 3.14159 /* if not in math.h */ int winWidth, winHeight; float angle = 0.0, axis[3], trans[3]; bool trackingMouse = false; bool redrawContinue = false; bool trackballMove = false; float lastPos[3] = {0.0, 0.0, 0.0}; int curx, cury; int startX, startY;
The Projection Step voidtrackball_ptov(int x, int y, int width, int height, float v[3]) { float d, a; /* project x,y onto a hemisphere centered within width, height , note z is up here*/ v[0] = (2.0*x - width) / width; v[1] = (height - 2.0F*y) / height; d = sqrt(v[0]*v[0] + v[1]*v[1]); v[2] = cos((M_PI/2.0) * ((d < 1.0) ? d : 1.0)); a = 1.0 / sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]); v[0] *= a; v[1] *= a; v[2] *= a; }
glutMotionFunc (1) Void mouseMotion(int x, int y) { float curPos[3], dx, dy, dz; /* compute position on hemisphere */ trackball_ptov(x, y, winWidth, winHeight, curPos); if(trackingMouse) { /* compute the change in position on the hemisphere */ dx = curPos[0] - lastPos[0]; dy = curPos[1] - lastPos[1]; dz = curPos[2] - lastPos[2];
glutMotionFunc (2) if (dx || dy || dz) { /* compute theta and cross product */ angle = 90.0 * sqrt(dx*dx + dy*dy + dz*dz); axis[0] = lastPos[1]*curPos[2] – lastPos[2]*curPos[1]; axis[1] = lastPos[2]*curPos[0] – lastPos[0]*curPos[2]; axis[2] = lastPos[0]*curPos[1] – lastPos[1]*curPos[0]; /* update position */ lastPos[0] = curPos[0]; lastPos[1] = curPos[1]; lastPos[2] = curPos[2]; } } glutPostRedisplay(); }
Idle and Display Callbacks void spinCube() { if (redrawContinue) glutPostRedisplay(); } void display() { glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); if (trackballMove) { glRotatef(angle, axis[0], axis[1], axis[2]); } colorcube(); glutSwapBuffers(); }
Mouse Callback void mouseButton(int button, int state, int x, int y) { if(button==GLUT_RIGHT_BUTTON) exit(0); /* holding down left button allows user to rotate cube */ if(button==GLUT_LEFT_BUTTON) switch(state) { case GLUT_DOWN: y=winHeight-y; startMotion( x,y); break; case GLUT_UP: stopMotion( x,y); break; } }
Start Function void startMotion(int x, int y) { trackingMouse = true; redrawContinue = false; startX = x; startY = y; curx = x; cury = y; trackball_ptov(x, y, winWidth, winHeight, lastPos); trackballMove=true; }
Stop Function void stopMotion(int x, int y) { trackingMouse = false; /* check if position has changed */ if (startX != x || startY != y) redrawContinue = true; else { angle = 0.0; redrawContinue = false; trackballMove = false; } }