180 likes | 598 Views
ГБОУ школа № 302 Фрунзенского района Санкт-Петербурга. ПОДОБНЫЕ ТРЕУГОЛЬНИКИ. 9 класс. Учитель математики Щербань Т.А. A. B. C. D. Пропорциональные отрезки. Отношением отрезков AB и CD называется отношение их длин, т.е.
E N D
ГБОУ школа № 302 Фрунзенского района Санкт-Петербурга ПОДОБНЫЕ ТРЕУГОЛЬНИКИ 9 класс Учитель математики Щербань Т.А.
A B C D Пропорциональные отрезки Отношением отрезков AB и CD называется отношение их длин, т.е. Отрезки AB и CDпропорциональны отрезкам A1B1и C1D1, если
B A C B1 A1 C1 Определение подобных треугольников Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого. Число k, равное отношению сходственных сторон треугольников, называется коэффициентом подобия
B A C B1 A A1 C1 B C D Отношение площадей подобных треугольников Отношением площадей двух подобных треугольников равно квадрату коэффициента подобия Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника.
B A C B1 A1 C1 Признаки подобия треугольников I признак подобия треугольников Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны Дано: ABC, A1B1C1, A = A1, B = B1 Доказать: ABC A1B1C1
B A C B1 A1 C1 Признаки подобия треугольников II признак подобия треугольников Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны Дано: ABC, A1B1C1, A = A1 Доказать: ABC A1B1C1
B A C B1 A1 C1 Признаки подобия треугольников III признак подобия треугольников Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны Дано: ABC, A1B1C1, Доказать: ABC A1B1C1
B N M C A Применение подобия к доказательству теорем Средняя линия треугольника Средней линией треугольника называется отрезок, соединяющий середины двух сторон Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны Дано: ABC, MN – средняя линия Доказать: MNAC, MN = AC
B A1 C1 O A C B1 Применение подобия к решению задач Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2 : 1,считая от вершины
C A D B Применение подобия к решению задач Высота прямоугольного треугольника, проведенная из вершины прямого угла, разделяет треугольник на два подобных прямоугольных треугольника, каждый из которых подобен данному треугольнику. ABC ACD, ABC CBD ACD CBD
C A D B Применение подобия к доказательству теорем 1.Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой
C A D B Применение подобия к доказательству теорем 2. Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой, проведенной из вершины прямого угла.