180 likes | 494 Views
Mutation scanning in Marfan syndrome using High Resolution Melt analysis. Kate Sergeant, Northern Genetics Service, Newcastle upon Tyne. Marfan syndrome. Autosomal dominant, 1 in 5 000 – 1 in 10 000 Connective tissue disorder Affects ocular, skeletal &
E N D
Mutation scanning inMarfan syndrome usingHigh Resolution Melt analysis Kate Sergeant, Northern Genetics Service, Newcastle upon Tyne
Marfan syndrome • Autosomal dominant, 1 in 5 000 – 1 in 10 000 • Connective tissue disorder • Affects ocular, skeletal & cardiovascular systems – risk of sudden death • FBN1 chr 15, 65 exons • 350 kDa extracellular matrix protein Fibrillin
FBN1 mutations • Over 600 reported mutations (UMD-FBN1) • Most mutations are unique • Most pathogenic mutations are missense affecting cysteine residues • Mutation analysis of FBN1 exons detects ~80% • Identifying a mutation gives a definitive diagnosis – cardiological screening to those at risk
Aims • Set up an assay for mutation scanning in FBN1 • Using the LightScanner High Resolution Melt (HRM) analysis system for heteroduplex detection • Validate this method using positive controls • Test Marfan syndrome patients for FBN1 mutations
HRM analysis variant Fluorescence D Fluorescence variant Temperature Temperature
Exon Nucleotide change Exon Nucleotide change 2 c.247+1G>A 33 c.4139G>A 3 c.306T>C 34 c.4270C>G 5 c.443-35A>G 35 c.4408T>C 6 c.718C>T 37 c.4588C>T 7 c.772C>T 39 c.4942+3_4942+9del7 9 c.1122delT 43 c.5297-2A>G 14 c.1793insTT 45 c.5671+28dupT 15 c.1875T>C 46 c.5672-63G>T 16 c.2023_2026delTTTG 47 c.5816G>A 21 c.2559C>A 53 c.6594C>T 22 c.2684_2689del6 54 c.6617-21A>T 28 c.3511T>C 55 c.6817A>G 29 c.3609_3610ins13 56 c.6888G>A 31 c.3963A>G 57 c.7204+63C>A 32 c.4038C>G 63 c.7852G>A Validation with positive controls
Results Exon 2 Exon 29 c.247+1G>A het c.3609_3610ins13 het Exon 43 Exon 57_2 c.7204+63C>A het c.5297-2A>G het
Results Exon Nucleotide change Identified? Exon Nucleotide change Identified? 2 c.247+1G>A 33 c.4139G>A 3 c.306T>C 34 c.4270C>G 5 c.443-35A>G 35 c.4408T>C 6 c.718C>T 37 c.4588C>T 7 c.772C>T 39 c.4942+3_4942+9del7 9 c.1122delT 43 c.5297-2A>G 14 c.1793insTT 45 c.5671+28dupT 15 c.1875T>C 46 c.5672-63G>T () 16 c.2023_2026delTTTG 47 c.5816G>A 21 c.2559C>A 53 c.6594C>T 22 c.2684_2689del6 54 c.6617-21A>T () 28 c.3511T>C 55 c.6817A>G 29 c.3609_3610ins13 56 c.6888G>A 31 c.3963A>G 57 c.7204+63C>A 32 c.4038C>G 63 c.7852G>A
Exons 46 and 54 – false negatives? Exon 46 c.5672-63G>T het wild type c.5672-63G>T het wild type ?
Exon 45 – false negative Exon 45 c.5671+28dupT het
Exon 45 – larger sample number c.5671+28dupT het
False positives • 22 false positives were encountered • Problem with archived DNA and different extraction methods • Reduce this by • Standardising extraction methods • Dilute DNA samples in a common buffer • Double reaction volume
Summary of validation • 28 positive controls tested • 1 “true” false negative • 22 false positives • Sensitivity ~ 96% • Specificity ~ 94%
Patient panel • 6 patients tested so far • Correctly identified 12 SNPs • Reduced number of false positives • Specificity ~98%
Conclusions • Sensitive • Quick • Low cost • False positives • Different DNA samples • Some user variability • Suitable scanning technique for a large gene
Acknowledgements • All in the Newcastle laboratory • David Bourn • Claire Healey, Val Wilson & Danny Routledge • Salisbury laboratory – Catharina Yearwood