260 likes | 419 Views
Proving Properties of Constraint Logic Programs by Eliminating Existential Variables. Alberto Pettorossi (Università di Roma “Tor Vergata”), Maurizio Proietti (IASI-CNR, Roma), Valerio Senni (Università di Roma “Tor Vergata”). CILC2006 – DIB – Università di Bari. 26-27 June 2006.
E N D
Proving Propertiesof Constraint Logic Programsby Eliminating Existential Variables Alberto Pettorossi (Università di Roma “Tor Vergata”), Maurizio Proietti (IASI-CNR, Roma), Valerio Senni (Università di Roma “Tor Vergata”) CILC2006 – DIB – Università di Bari 26-27 June 2006
1. Outline of the work • Goal: proving first order properties of Costraint Logic Programs (CLPs) • Focus: CLPs on the domain of lists and real numbers • Technique: existential quantifiers elimination by means of program transformation
2. Programs on lists of reals • Polynomials p ::= a | X | p1 + p2 | a X where a and X Var • Constraints c ::= p1 = p2 | p1 < p2 | p1 ≤ p2 | c1 c2 • LR-programs head terms h ::= X | [ ] | [X|L] where X Var and L VarL body terms b ::= p | L clauses cl ::= r1(h1,…,hn) c | r1 (h1,…,hn) c r2 (b1,…,bn) | r1 (h1,…,hn) c r2 (b1,…,bn) Goal: given a program P and a property , verify whether or not M(P)
3. Proof by transformation • start from the pair < P, prop > • transform the statement prop into a (stratified, finite) set of definitions D1…Dn • add each of the D1…Dn to the inital program P obtaining at each step a new lr-program without existential variables • If the transformation process terminates, then the definition of prop is propositional (by definition of lr-programs)
4. An example • Initial program P member (X,[Y|L]) X=Y member (X,[Y|L]) member (X,L) • Property : L U X ( X L X ≤ U ) we want to show that any list of reals has an upper bound • Two steps : • First we transform the statement prop into a set of definitions D1…Dn • By applying the Unfold/Fold rules we transform D1…Dn P into a new program T such that the definition of prop ispropositional
r q p 5. Clause-Form Transformation : L U X ( X L X ≤ U ) prop L U X ( X L X > U ) D4: prop p D3: p list (L) q (L) D2: q (L) list (L) r (L,U) D1: r (L,U) X > U list(L) member (X,L) Step 1. • not lr-clauses • with existential • variables
6. Unfold-Fold Transformation Step 2. The unfold/fold transformation is aimed at transforming the clauses obtained after the Step 1 into lr-clauses. D4 : prop p D3 : p p1 p1 p1 D2 : q ([]) q ([X|T]) q1(X,T) q1 (X,[Y|T]) X > Y q1 (X , L) q1 (X,[Y|T]) X ≤ Y q1 (Y , L) D1 : r ([X|T],U) X > Ulist (L) r ([X|T],U) r (T,U) • by repeated applications of the • unfold, • fold and • constraint replacement rules • we obtain the final program T T For each initial predicate we have obtained a new definition, made of lr-clauses. Possibly with the use of some auxiliary predicate (p1, q1)
6. Unfold-Fold Transformation Step 2. The unfold/fold transformation is aimed at transforming the clauses obtained after the Step 1 into lr-clauses. D4 : prop p D3 : p p1 p1 p1 D2 : q ([]) q ([X|T]) q1(X,T) q1 (X,[Y|T]) X > Y q1 (X , L) q1 (X,[Y|T]) X ≤ Y q1 (Y , L) D1 : r ([X|T],U) X > Ulist (L) r ([X|T],U) r (T,U) • by repeated applications of the • unfold, • fold and • constraint replacement rules • we obtain the final program T T For each initial predicate we have obtained a new definition, made of lr-clauses. Possibly with the use of some auxiliary predicate (p1, q1)
6. Unfold-Fold Transformation Step 2. The unfold/fold transformation is aimed at transforming the clauses obtained after the Step 1 into lr-clauses. D4 : prop p D3 : p p1 p1 p1 D2 : q ([]) q ([X|T]) q1(X,T) q1 (X,[Y|T]) X > Y q1 (X , L) q1 (X,[Y|T]) X ≤ Y q1 (Y , L) D1 : r ([X|T],U) X > Ulist (L) r ([X|T],U) r (T,U) • by repeated applications of the • unfold, • fold and • constraint replacement rules • we obtain the final program T T For each initial predicate we have obtained a new definition, made of lr-clauses. Possibly with the use of some auxiliary predicate (p1, q1)
6. Unfold-Fold Transformation Step 2. The unfold/fold transformation is aimed at transforming the clauses obtained after the Step 1 into lr-clauses. D4 : prop p D3 : p p1 p1 p1 D2 : q ([]) q ([X|T]) q1(X,T) q1 (X,[Y|T]) X > Y q1 (X , L) q1 (X,[Y|T]) X ≤ Y q1 (Y , L) D1 : r ([X|T],U) X > Ulist (L) r ([X|T],U) r (T,U) prop • by repeated applications of the • unfold, • fold and • constraint replacement rules • we obtain the final program T T For each initial predicate we have obtained a new definition, made of lr-clauses. Possibly with the use of some auxiliary predicate (p1, q1)
7. The Unfold-Fold Strategy A general Unfold/Fold strategy Input: an lr-program P and a hierarchy <D1,...,Dn> of clauses Output: an lr-program T for all D1,...,Dn : Di unfold+ replace-constraints* no yes i > n T define-fold* the final program yes no i := i + 1 NewDefs =
8. The Unfold-Fold Strategy at work start from clause D1 : r (L,U) X > U list(L) member (X,L) Unfold : r ([X|T],U) X > U list(T) r ([X|T],U) Y > U list(T) member (Y,T) Fold : 1. r ([X|T],U) X > U list(T) 2. r ([X|T],U) r (T,U)
8. The Unfold-Fold Strategy at work start from clause D1 : r (L,U) X > U list(L) member (X,L) Unfold : r ([X|T],U) X > U list(T) r ([X|T],U) Y > U list(T) member (Y,T) Fold : 1. r ([X|T],U) X > U list(T) 2. r ([X|T],U) r (T,U) We go on with the following definitions D2, D3, and D4 • lr-clauses • without existential • variables
9. Introduction of new Definitions clause D2 : q (L) list (L) r (L,U) Unfold : q ([ ]) q ([X|T]) X ≤ U list (T) r (T,U) we cannot fold
9. Introduction of new Definitions clause D2 : q (L) list (L) r (L,U) Unfold : q ([ ]) q ([X|T]) X ≤ U list (T) r (T,U) Define : q1(X,T) X ≤ U list (T) r (T,U) Fold : 3. q ([ ]) 4. q ([X|T]) q1(X,T) Continue to apply the transformation rules to the new definition Unfold : q1(X,[ ]) q1(X,[Y|T]) X ≤ U Y ≤ U list (T) r (T,U) we cannot fold
need for new definitions 9. Introduction of new Definitions clause D2 : q (L) list (L) r (L,U) Unfold : q ([ ]) q ([X|T]) X ≤ U list (T) r (T,U) Define : q1(X,T) X ≤ U list (T) r (T,U) Fold : 3. q ([ ]) 4. q ([X|T]) q1(X,T) Continue to apply the transformation rules to the new definition Unfold : q1(X,[ ]) q1(X,[Y|T]) X ≤ U Y ≤ U list (T) r (T,U) we cannot fold reduce the occurrences of existential variables
U U U X Y X > Y X ≤ U X ≤ Y Y ≤ U X Y X ≤ U Y ≤ U X Y 10. Constraint Replacement : q1 (X,[Y|T]) X ≤ U Y ≤ U list (T) r (T,U)
U U U X Y X > Y X ≤ U X ≤ Y Y ≤ U X Y X ≤ U Y ≤ U X Y 10. Constraint Replacement • : q1 (X,[Y|T]) X ≤ U Y ≤ U list (T) r (T,U) • We substitute the clause for and • : q1 (X,[Y|T]) X > Y X ≤ U list (T) r (T,U) • : q1 (X,[Y|T]) X ≤ Y Y ≤ U list (T) r (T,U)
U U U X Y X > Y X ≤ U X ≤ Y Y ≤ U X Y X ≤ U Y ≤ U X Y 10. Constraint Replacement • : q1 (X,[Y|T]) X ≤ U Y ≤ U list (T) r (T,U) • We substitute the clause for and • : q1 (X,[Y|T]) X > Y X ≤ U list (T) r (T,U) • : q1 (X,[Y|T]) X ≤ Y Y ≤ U list (T) r (T,U) • after folding we obtain : • 5. q1 (X,[Y|T]) X > Y q1 (X,T) • 6. q1 (X,[Y|T]) X ≤ Y q1 (Y,T) which allow for folding
11. Last part of the Trasformation clause D3 : p list (L) q (L) Unfold : p list(T) q1 (X,T) Define : p1list(T) q1 (X,T) Fold : 7. p p1 Unfold : p1 X > Y list(T) q1 (X,T) p1X ≤ Y list(T) q1 (Y,T) Constraint Replace : p1 list(T) q1 (Y,T) Fold : 8. p1 p1 project these constraints out
12. Final Program At the end of the transformation we obtain the following program: 1. r ([X|T],U) X > U list(T) 2. r ([X|T],U) r (T,U) 3. q ([ ]) 4. q ([X|T]) newp1(X,T) 5. q1 (X,[Y|T]) X > Y q1 (X,T) 6. q1 (X,[Y|T]) X ≤ Y q1 (Y,T) 7. p p1 8. p1 p1 9. prop p T : By simple inspection of the program T we can decide that the property prop is true
13. Termination A brief note on termination: for all D1,...,Dn : Di unfold+ replace-constraints* no yes i > n T define-fold* the final program yes no i := i + 1 NewDefs =
13. Termination A brief note on termination: The only source for nontermination is the possible introduction of infinitely many new definitions for all D1,...,Dn : Di unfold+ replace-constraints* no yes i > n T define-fold* the final program yes no i := i + 1 NewDefs =
14. Experimental results We have run some experiments on the MAP system that implements the Unfold/Fold transformation strategy. • constraints handling: clp(r) module of SICStus prolog (implementing a variant of the Fourier-Motzkin algorithm for existential variables elimination) • theorems in the theory of linear orders, lists, and sum
15. Future work • identify some theories of interest for which this strategy succeeds • experiment on different data structures (e.g. trees) and domains with a linear order and closed under projection • investigate phenomena that lead to nontermination • generalization techniques that allow for folding