251 likes | 342 Views
Classifying Customer-Provider Relationships in the Internet. Thomas Erlebach,Alexander Hall Computer Engineering and Networks Lab.,ETH Z űrich Thomas Schank Dep.of Computer & Information Science,Universit ä t Konstanz. jp. us. AS AS peer peer.
E N D
ClassifyingCustomer-Provider Relationships in the Internet Thomas Erlebach,Alexander Hall Computer Engineering and Networks Lab.,ETH Zűrich Thomas Schank Dep.of Computer & Information Science,Universität Konstanz
jp us AS AS peer peer wang@dais.is.tohoku.ac.jpから 中村 先生(nakamura@umunhum.stanford.edu.us)にメールを送信する場合では ac edu tohoku berkeley stanford is riec umunhum AS AS customer provider dais
Preliminaries Given a simple,undirected graph G=(V,E) and a set P of simple ,undirected paths in G. • if it starts with zero or more customer-provider edges • followed by zero or one peer-peeredge • followed by zero or more provider-customer edges
Examples × ×
Lemma2 • for a given edge classification , is vaild no source node in it • peer-peer edges can be completely disregarded. ×
The problems in this paper • Type-of-Relationship problem(ToR) given a graph G=(V,E) and a set P of simple,undirected paths in G,classifying the edges of the graph into customer-provider relationships such that as many of the paths in P as possible are valid. • ALLToR decide of G s.t. are valid,and compute it if it exists. • MAXToR compute an orientation of G s.t. ,
The ALLToR Problem ---------solve ALLToR in linear time by reducing it to 2SAT Lemma 3: • of length k can be split up into k-1 paths , of length 2 and • Of G , p is valid all are valid. Note:edge appears negated if it is pointing away from the internal node of path and not negated if it is pointing towards
The ALLToR Problem ---------what is 2SAT problem • SAT problem variables: clauses: a literal is a variable or the negation of a variable and a clause is a set of literals. A clause is true is one of the literals in the clause is true. the input to SAT is a collection of clauses the output is the answer to: Is there an assignment of true/false to the variables so that every clause is satisfied (satisfied means the clause is true)? when all clauses ,we call it 2SAT problem.
The ALLToR Problem ---------solve ALLToR in linear time by reducing it to 2SAT 1.Orient the edges of G=(V,E)arbitrarily. 2.Split all paths into paths of length 2,where is the length of path . 3.Construct a 2SAT instance where each edge corresponds to a variable and each path (of length 2) corresponds to a clause . 4.Solve the resulting 2SAT instance. 5. If the 2SAT instance is not satisfiablethe ALLToR is not solvable. otherwise,flip :whose corresponding variable has been assigned false by 2SAT
The MAXToR Problem---------prove that MAXToR is NP-hard • To prove that MAXToR is NP-hard,we wil give an reduction from the well known NP-hard maximum independent set problem(MAXIS) to MAXToR. Lemma 4 with two paths s.t.同時にvalidできない
The MAXToR Problem---------prove that MAXToR is NP-hard • What is MAXIS problem? ・INSTANCE: Graph . ・SOLUTION: An independent set of vertices s.t. arenot joined by an edge max( )
The MAXToR Problem---------prove that MAXToR is NP-hard MAXISのinstance からMAXToRのinstance を作る ・ ー> と はedge-disjoint. ・ ー> と は同時にvalidにしないように。
The MAXToR Problem---------conclusion もしMAXToRは多項式時間で解ける或いは近似解を求められるならば、MAXISに対しても同じことを言える。 しかし、MAXISはNP-困難である、そして任意の に対して近似率は の近似アルゴリズムは存在しないことは既に知られている。
Approximating MAXToR instances with bounded path length • a simple approximation algorithm 各edgeに対して勝手に方向をつける。 a path of length is valid with probability
Approximating MAXToR instances with bounded path length ならば :近似解、 :最適解
Approximating MAXToR instances with bounded path length • MAX2SATを用い、もっと良い近似率を得られる。 方針: 符号の定義:
Approximating MAXToR instances with bounded path length ①パスの長さ=2のとき, MAXToRの近似率=0.931(MAX2SATの近似率)
Approximating MAXToR instances with bounded path length ②パスの長さ=3のとき,
Approximating MAXToR instances with bounded path length ②パスの長さ=3のとき, 同様に 既存研究によって
Approximating MAXToR instances with bounded path length ③パスの長さ=4のとき, ②の場合と同じ方法で評価する ④パスの長さ>4のとき,以上の方法は助からない。
MAXToRはAPX-完全 ・すべてのパス長=2の場合でも、MAXToRはある定数を超える近似率を 得られない。 方針:
MAXToRはAPX-完全 • . • . • . 作られたMAXToRのinstanceの解に対して、
MAXToRはAPX-完全 パス長=2の場合に対応するため、
MAXToRはAPX-完全 同様に 既存研究によって