350 likes | 443 Views
Part 1 : Programming and Abstraction. Lecture 2: Grammar and Parsing. Dr. Ir. I.S.W.B. Prasetya wishnu@cs.uu.nl A. Azurat S.Kom. ade@cs.uu.nl. Transformation. Transformation: Transforming one form of structured information to another form.
E N D
Part 1 : Programming and Abstraction Lecture 2: Grammar and Parsing Dr. Ir. I.S.W.B. Prasetya wishnu@cs.uu.nl A. Azurat S.Kom. ade@cs.uu.nl
Transformation • Transformation:Transforming one form of structured information to another form. • Any kind of information processing is transformation.Information with complicated structure: program, specification, formula • Example of applications : • compiler, interpreter, translator • HTML tool • Y2K tool • Oracle code generator
Describing structure • Example: 1.27601 e -10 • Grammar : SignedFloat Sign Float | Float Float Pdigit.PinteSignedExp SignedExpr Sign Pint | Pint Pdigit 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 Pint Digit | Digit Pint Digit 0 | Pdigit
Non-terminal symbol Terminal symbols Terminology Float Pdigit.PinteSignedExp This is called a production rule A grammar is a collection of a production rules.A grammar is context free (CGF) if the left hand side of all its rules consists of only one non-termimal.
Deriving sentences P | APA | BPB | CPC A a B b C c with start P as the symbol. A sentence s is a sentence of G, if it can be derived from the start symbol of G.Example: P P APA AA ... aa P APA ABPBA ... abba
Language P | APA | BPB | CPC A a B b C c with start P as the symbol. L(G) = the set of all (terminal) sentences of G Example: for the above grammarL(G) = the set of all even length palindromes over {a,b,c}
Bigger Example Program Identifier(ParameterList)Decl Body ParameterList Parameter | Parameter,ParameterList Parameter Identifier:Type ... Body {Statement} Statement skip | Assignment | ... Assignment Identifier:=Expression ...
Transformation transformation result sentence "abba" semantic function parser P parse tree A A P B P B a b b a
Parse Tree Program ParameterList Decl Identifier Body Statement Assignment Identifier Expression x*y+1 } := poo { x ( x:int,y:int )
Representing Parse Tree data Pal = Empty | A Pal | B Pal | C Pal Example:A (B (A Empty)) represents abaaba
Representing Parse Tree Form Form/\Form | Form \/Form | Form==>Form | ~ Form | Var | Const Var ... Const T | F
Representing Parse Tree Expr Expr Expr Expr Expr Expr Expr Expr Var Var Var Var ~ a ==> b a \/ b ==>
Representing Parse Tree data Form = Form `AND` Form | Form `OR` Form | Form `IMP` Form | NOT Form | Var String | Const Bool Example:(Var "a" `OR` Var "b") `IMP` Var "a" Notice also similarty between data type definition and CFG.
Semantic Function • Example: simple tautology checker(a /\ T) \/ ~a taulogy we won't do this (a /\ F) ==> ~a taulogy • Represent result with Maybe Bool data Maybe a = Just a | nothing • staut :: Form -> Maybe Bool
Semantic Function staut (Var a) = Nothing staut (Const c) = Just c staut (p `AND` q) = case (staut p, staut q) of (Just False , _) -> Just False (_ , Just False) -> Just False (Just True , Just True) -> Just True otherwise -> Nothing
Semantic Function • Anopther example: (simple) simplifier(a \/ T) /\ ~a ~a • simp :: Form -> Form
Semantic Function simp (Var a) = Var a simp (Const c) = Const c simp (p `AND` q) = case (simp p, simp q) of (Const False , _) -> Const False (_ , Const False) -> Const False (Const True , q') -> q' (p' , Const True) -> p' otherwise -> Nothing
Parser • Parser:Take a string, and tries to build a parse tree. • For our example grammar of formula:parser :: String -> Form • type Parser result = String -> result • type Parser result = String -> (result,String) • type Parser result = String -> [(result,String)] • type Parser sym res = [sym] -> [(res,[sym])]
Several Primitive Parsers symbol :: Eq s => s -> Parser s s symbol a [ ] = [ ] symbol a (x : xs) | x == a = [(x,xs)] | otherwise = [ ] Example: symbol 'C' :: Parser Char Char symbol 'C' "CLASS" = [('C', "LASS")]
Several Primitive Parsers satisfy :: (s -> Bool) -> Parser s s satisfy p [ ] = [ ] satisfy p (x : xs) | p x = [(x,xs)] | otherwise = [ ] Example: satisfy isDigit :: Parser Char Char satisfy isDigit "100" = [('1', "00")]
Several Primitive Parsers token :: Eq s => [s] -> Parser s [s] Example: token "class" "class A { } " = [("class", " A { } ")] token "class" "cla <= 0" = [ ]
Several Primitive Parsers failp :: Parser s a failp xs = [ ] succeed :: a -> Parser s a succeed r xs = [(r,xs)]
Parser Combinators (<|>) :: Parser s a -> Parser s a -> Parser s a (p <|> q) xs = p xs ++ q xs Example: pSign = symbol '+' <|> symbol '-'
Parser Combinators (<*>) :: Parser s (b -> a) -> Parser s b -> Parser s a (p <*> q) xs = [ (f x , zs) | (f ,ys) <- p xs , ( x, zs) <- q ys ] Example: (pSign <|> succeed '+') <*> satisfy isDigit <*> symbol '.' <*> pDigits
Parser Combinators (<$>) :: (a -> b) -> Parser s a -> Parser s b (f <$> p) xs = [ (f y , ys) | (y , ys) <- p xs ] Example: p = f <*> satisfy isDigit where f :: String -> Int f c = read [c]
f digit theRest = digit : theRest Priority and Associativity pDigits :: Parser Char String pDigits = pDigit <|> ( (f <$> pDigit) <*> pDigits) where f digit = (\theRest -> digit : theRest) or.... f is simply (:)
Priority and Associativity infixl 7 <$> infixl 6 <*> infixr 4 <|> pDigits = pDigit <|> (:) <$> pDigit <*> pDigits pDigits = read <$> (pDigit <|> (:) <$> pDigit <*> pDigits)
Example pIdentifier = (:) <$> satisfy isLower <*> pIdentifier <|> sing <$>satisfy isLower pVar :: Parser Char Form pVar = Var <$> pIdentifier
Example pConst = mk_True <$> symbol 'T' <|> mk_False <$> token 'F' where mk_True s = Const True mk_False s = Const False
Example pForm = mk_And <$> pForm <*> token "/\" <*> pForm <|> pVar <|> pConst <|> ... left recursive!!
Removing Left Recursion Form Atom/\Form | Atom \/Form | Atom==>Form | ~ Form Atom | Var | Const Var ... Const T | F
Example pAtom = pVar <I> pConst pForm = mk_And <$> pAtom <*> token "/\" <*> pForm <|> ... where mk_And a _ f = a `AND` f
pDigits = pDigit <|> (:) <$> pDigit <*> pDigits Example: pDigit "123" = [("1","23"), ("12","3"), ("123", "") ] Greed pDigits = (:) <$> pDigit <*> pDigits <|> pDigit Example: pDigit "123" = [("123",""), ("12","3"), ("1", "23") ]
list x s = x : s Many many :: Parser s a -> Parser s [a] many p = list <$> p <*> many p <|> succeed [ ] many1 :: Parser s a -> Parser s [a] many1 p = list <$> p <*> many p
Greedy greedy, greedy1 :: Parser s b -> Parser s [b] greedy = first . many greedy1 = first . many1 Example: pDigits = many1 (satisfy isDigit) pDigits = greedy1 (satisfy isDigit)