60 likes | 240 Views
Standard Deviation. ( ). Σ fx 2 – x 2 n. OR. ( ). Σ fx 2 – Σ fx 2 n n. ( ). 1. 1. 6. 12. 15. 45. 16. 64. 75. 15. 12. 72. 14. 98. 20. 79. 367. Standard Deviation. ( ). ( ). Σ fx 2 – Σ fx 2 Σ f Σ f.
E N D
Standard Deviation ( ) Σfx2 – x2 n OR ( ) Σfx2 – Σfx 2 n n ( )
1 1 6 12 15 45 16 64 75 15 12 72 14 98 20 79 367
Standard Deviation ( ) ( ) Σfx2 – Σfx 2 Σf Σf ( - ) ( ) 367 79 2 20 20
Standard Deviation ( ) Σfx2 – Σfx 2 n n ( ) ( - ) ( ) 367 79 2 20 20 (18.35 – 3.952)
Standard Deviation ( ) Σfx2 – Σfx 2 n n ( ) ( - ) ( ) 367 79 2 20 20 (18.35 – 3.952) =(18.35-15.6025)
Standard Deviation ( ) Σfx2 – Σfx 2 n n ( ) ( - ) ( ) 367 79 2 20 20 (18.35 – 3.952) =(18.35-15.6025) ( 2.7475) = 1.66