1 / 28

Population dynamics L5

Population dynamics L5. English in Natural Science 自然科学の英語. Abundance. Birds in river forests (Spain) (Sanchez-Bayo, F. 1985). Abundance vs body size. Small animals are more abundant than large ones Birds are less abundant than mammals. Mammals Log(Y) = 1.3-0.66*log [X] Birds

jalila
Download Presentation

Population dynamics L5

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Population dynamicsL5 English in Natural Science 自然科学の英語 自然科学の英語-ENS-L5

  2. Abundance Birds in river forests (Spain) (Sanchez-Bayo, F. 1985) 自然科学の英語-ENS-L5

  3. Abundance vs body size • Small animals are more abundant than large ones • Birds are less abundant than mammals Mammals Log(Y) = 1.3-0.66*log[X] Birds Log(Y) = 0.22-0.54*log[X] 350 mammal and 552 bird species (Silva et al., 1997) 自然科学の英語-ENS-L5

  4. Abundance and distribution Jim Brown (1984) “Population densities decrease towards the boundary of the geographical range of a species” Ilkka Hanski (1982) “Widespread species tend to be more abundant” • Sampling artifact • Specialization Generalist - large area Specialist - small area • Metapopulations and dispersal Western grey kangaroo (Macropus fuliginosus) (Caughley et al. 1987) 自然科学の英語-ENS-L5

  5. Rapoport’s rule (1975) “Geographic range size decreases from polar to equatorial latitudes, with smallest range sizes in the tropics” Why? Tolerance Dispersal favours generalist species Competition + + + Tolerance Dispersal Competition Abundance vs distribution range 523 North American mammals (Pagel et al. 1991) 自然科学の英語-ENS-L5

  6. Big mammals Birds Fish invertebrates Small mammals Population dynamics • Parameters • Natality (fertility) rate • Offspring, reproduction rx = bx ÷ nx • Mortality rate • Life expectancy (longevity) qx = dx ÷ nx • Life tables • Mortality/cohort • Age, sex structure 自然科学の英語-ENS-L5

  7. Exponential Linear Intrinsic capacity for increase r (Lotka, 1925) • Exponential • constant rate (%) Nt = N0 ert N population • Finite rate of increase  = er  individual • Doubling time: time for a quantity to double Dt = 70 ÷r • Linear • constant amount y = x + A • Logistic K = carrying capacity Nt = K ÷ (1+ea-rt) 自然科学の英語-ENS-L5

  8. Exponential growth Populations (human, r = 1.7% year) Food consumption Waste production Economy (Japan: 1-2% year) (USA: 5% year) (China: 7% year) Exponential reduction Radioactive residues Chemical concentration (eg. pesticides, pollutants) Forest destruction 1 2 3 4 5 6 Natural processes Gone! • Linear growth • [CO2] atmosphere • Food production (?) • industry 自然科学の英語-ENS-L5

  9. Reindeer Daphnia rosea (Scheffer, 1951) (Walters et al., 1990) Limits to population growth • Abiotic factors • Temperature • Water availability • Food resource • carrying capacity (K) T.R. Malthus (1766-1834) • Predators 自然科学の英語-ENS-L5

  10. r unrelated to abundance High r (r strategy) Generalist niche Unstable populations Quick recovery Low r (K strategy) Specialist niche Stable populations Prone to extinction Decisive factor: Mortality rate High r Low K How to increase r ? Larger offspring size (r) Increase longevity (K) more times to reproduce Younger reproductive age (both r and K) Repeated reproduction (K strategy) Reproductive success Big-bang reproduction (r strategy) Reproductive effort Life strategies 自然科学の英語-ENS-L5

  11. Stationary distribution No population increase in time Fertility rate = mortality rate r = qx 自然科学の英語-ENS-L5

  12. Competition • Resource competition • Inter or intraspecific • Interference competition (contest) • Usually intraspecific • Sex: males only Resources • Plants • Water • Light • Nutrients in soil • Animals • Food • Space 自然科学の英語-ENS-L5

  13. =r1N1 =r2N2 Competition: Mathematical models Lotka (1925) and Volterra (1926) Species 1 dN1 K1-N1-aN2 dt K1 Species 2 dN2 K2-N2-bN1 dt K2 Species 2 wins Species 1 wins Coexistence Exclusion 自然科学の英語-ENS-L5

  14. Zero growth Neither species can live 1 • Equilibrium point depends on rate of consumption of resources 1 and 2 R1: rate A > rate B A wins 2 Only species A can live 3 Species A wins 4 Species A & B co-exist 5 Species B wins 6 Only species B can live Tilman model (1990) 自然科学の英語-ENS-L5

  15. Spatial segregation Saccharomyces + Schizosaccharomyces yeast (Gause, 1932) outside inside Grain beetles in wheat (Birch,1953) Co-existence • Species must occupy different niches (Gause, 1934) • resource partitioning (share) 自然科学の英語-ENS-L5

  16. Tern species in Christmas Island (Ashmole, 1968) Segregation • Efficient utilization of the same resource • Habitat (space) • Size of prey (diet) • Time • Day - night • Seasons (migration) • Mechanism of evolution • r and K selection theory (MacArthur & Wilson, 1967) 自然科学の英語-ENS-L5

  17. Predators External Big size Parasites Internal - live on host Small size (i.e.larvae) Predation & parasitism • Natural agents to control populations • Exponential increase logistic model • Exponential reproduction ‘biomass waste’ • Producers: plants, phytoplankton • Predation: one species eats another • Herbivores: eat plants • Carnivores/parasites: eat herbivores (prey) • Predators/parasites USE that extra biomass 自然科学の英語-ENS-L5

  18. Abundance Prey (lemming) abundance bird predators Predators and parasites depend on prey/host 自然科学の英語-ENS-L5

  19. Parasitic wasp Prey = Host (Utida, 1957) Models • Discrete populations: one generation/year • Prey Nt+1 = (1-B zt)Nt-C NtPt • Predator Pt+1 = Q NeqPt B = prey reproductive rate C = predator efficiency Q = predator reproductive rate 自然科学の英語-ENS-L5

  20. Predation Intraspecific competition Predator density (P) Environmental pressure (Carrying capacity) Prey population density (N) Caribou (Bergerud 1980; Sinclair 1989) Continuous generations • Lotka (1925) and Volterra (1926): unrealistic • Rosenzweig-MacArthur (1963) Predator equilibrium Food shortage equilibrium 自然科学の英語-ENS-L5

  21. Stochastic variation Humans R0 = 1.1 Stable populations Population regulation Net reproductive rate (R0) = number of female offspring / female / generation Birth rate (b) UP Death rate (d) DOWN • Birth rate (b) DOWN • Death rate (d) UP • predation • disease • food shortage 自然科学の英語-ENS-L5

  22. Probability of extinction (Pielou, 1969) P = (d/b)N0 d = death rate b = birth rate N0 = initial population size b > d P > 1.0 survival b < d P < 1.0 extinction b = d P = 1.0 extinction because of stochastic changes in a lifetime (e.g. disease, climate) Extinction • Species ceases to exist • Causes • Habitat loss • Introduced species (competition, predation) • Overkill • stochasticity • Human impact • Habitat destruction • Overkill (e.g. Dodo, Mammoth, Moa) 自然科学の英語-ENS-L5

  23. Natural extinction • Geological eras and periods • Characterised by changes in biodiversity • Extinction of old forms • Apparition of new forms • Natural causes • Atmospheric composition • Plants increased O2 and decreased CO2 • Astronomic - Milankovitch cycles • Climate variation (i.e. iceage) • Catastrophes (Cuvier, 1769-1832) • Five major extinction events • Cause: asteroids? Earth’s geochemistry? 自然科学の英語-ENS-L5

  24. 15% families 50% genera 52% families 95% species Historical extinction events 自然科学の英語-ENS-L5

  25. Italy Denmark Caribbean Cretaceous-Triasic boundary extraterrestrial iridium layer meteorite (Kastner et al. 1984) (Alvarez et al. 1980, 82) 自然科学の英語-ENS-L5

  26. Mass extinctions…recovery 自然科学の英語-ENS-L5

  27. Evolution and extinction • Extinction is an irreversible process • Extinction events have a founder effect • New taxa appear • Biodiversity flourishes, even more than before • Eventually all species go extinct • Evolve to generate another species (average lifetime of species is 10 m years) • Stop existing - gone! 自然科学の英語-ENS-L5

  28. References • Charles J. Krebs. 2001. Ecology 5th ed. / 応用動物昆虫学  B-226 • Tokeshi M. 1999. Species coexistence: ecological and evolutionary perspectives/応用動物昆虫学 B-207 • Alvarez, L. W., W. Alvarez, et al. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction.Science208: 1095-1108 自然科学の英語-ENS-L5

More Related