230 likes | 335 Views
Magnetic strings , M5 branes , and N=4 SYM on del Pezzo surfaces:. A 5d/2d/4d correspondence Babak Haghighat , Jan Manschot, S.V., to appear ; B. Haghighat and S.V., arXiv :1107.2847. Conjecture.
E N D
Magneticstrings, M5 branes, and N=4 SYM on del Pezzo surfaces: A 5d/2d/4d correspondence BabakHaghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:1107.2847
Conjecture • The (0,4) elliptic genus of the magneticmonopolemodulispaceequals the partitionfunction of N=4 SYM on the del Pezzosurface .
2d/4d correspondence • Ourconjecturefollowsfrom a variant of the 2d/4d correspondence a la AGT:
Some important references • Maldacena, Strominger, Witten (‘97) • Minasian, Moore and Tsimpis (‘99) • Gaiotto, Strominger and Yin (‘06) • Minahan, Nemeschansky, Vafa and Warner (‘98) • Alim, Haghighat, Hecht, Klemm, Rauch, Wotschke (‘10) • De Boer, Cheng, Dijkgraaf, Manschot, Verlinde (‘06) (Usefulforus, but different set-up)
Conjecture • The (0,4) elliptic genus of the magneticmonopolemodulispaceequals the partitionfunction of N=4 SYM on the del Pezzosurface .
The (0,4) CFT • (0,4) Sigma model • Target space: modulispace of magneticmonopoles (hyperkahler) withaddition of adjointfermionic zero modes and Nfflavorfermionic zero modes;
The (0,4) CFT • This is actually the lift of the quantummechanicsdescription of magneticmonopoles in SU(2) N=2 D=4 Seiberg-WittenwithNfmasslesshypermultiplets [Sethi, Stern & Zaslow ’95; Cederwall, Ferretti, Nilsson & Salomonson ’95; Gauntlett & Harvey ’95] and [Gauntlett, Kim, Lee, Yi, ’00].
5d GaugeTheory • Uplifting the dynamics of the magneticmonopolefromd=1 to d=2 amounts to embedding the monopole in 5d gaugetheory, whereitbecomes a BPS magneticstring. • For Nf≤8masslessflavors in 5d SU(2) gaugetheoryon the coulomb branch, the tensioncanbecomputed to be
5d GaugeTheory • Study of 5d N=1 susygaugetheories was initiatedbySeiberg ‘96. • Nonrenormalizabletheoriesthatshouldbeembedded in stringtheory: • Geometric engineering (Douglas, Katz & Vafa ‘96; Morrison & Seiberg ‘96; Intrilligator, Morrison & Seiberg ’97) • (p,q) branes in IIB (Aharony, Hanany & Kol ‘97)
Geometric engineering • M-theoryonlocal CY3: canonicallinebundle over del Pezzo, • In ourconventions, • Thisengineers 5d N=1 SU(2) gaugetheorywithNfflavors.
Geometric engineering • Magneticstring is M5 branewrapping del Pezzo. Itstensionprecisely matches the volume of the del Pezzo!
5d/2d/4d correspondence • Using the connection to 5d gaugetheory, we knowwhat the (0,4) CFT is: 5d gaugetheorytellsusthatNf≤8
Conjecture • The (0,4) elliptic genus of the magneticmonopolemodulispaceequals the partitionfunction of N=4 SYM on the del Pezzosurface .
Tests • r=1, Nf=0: Free CFT, 3 non-compact and 1 compact scalars + 4 right-movingfermions. Elliptic genus:
Test 1 • U(1) N=4 SYM partitionfunctionon • Localizesoninstantons (Vafa & Witten ’94). Result is (Gottsche ’90) • This matches the 2d CFT sidesince and
A more complicated test • r=1, Nf ≠0, masslesschargedflavors. Flavorgroup SO(2Nf) • but 2Nf extra left-movingfermions. Moebiusbundle; Manton & Schroers ’93) • Quantummechanics of dyonicmonopole must satisfy(Seiberg & Witten ’94, Gauntlett & Harvey ’96)
Test 2: 2d CFT calculation • In the CFT, this is lifted to anorbifoldactionwith • Elliptic genus yields
Test 2: 2d CFT calculation • Onecantreat the compact boson and flavorsseparatelywithtwisted and untwisted sectors:
Test 2: 4d calculation • Del Pezzo = P1x P1withNfblow-ups. • Choose basis in forwhich the intersection matrix displays SO(2Nf) symmetry : • Latticeinstead of usualunimodularlatticewithintersection matrix
Test 2: 4d calculation • Partitionfunction has theta-functiondecomposition (Manschot ’11,…) • For rank one, r=1,
Test 2: 4d calculation • Ifonechooses the restriction of the Kahlerclass to vanishalong the D-lattice, one has • with
Test 2: the 4d calculation • The fourtermscorrespond to the four sectors in the orbifold (0,4) CFT. • The thetafunctions of the DNflatticecorrespond to the flavorfermionswithcurrent algebra SO(2Nf). • The contributionsfrom the A-latticecorrespond to the contribution of the compact scalarwithshiftedmomentum and winding modes. • It is a miraclethat (if) thisworks!
Conclusion • We foundaninterestingnew 5d/2d/4d correspondence and providednon-trivial tests for rank r=1. • We have some more resultsformassiveflavors. • For r=2, the monopolemodulispace is that of Atiyah-Hitchin. We cannotcomputeitselliptic genus directly, but we have the answerfrom the 4d side.