450 likes | 467 Views
Learn about different algorithms for identifying communities within large networks, including guidelines for implementation, testing, and evaluation. Explore real-world applications and challenges in community structure detection.
E N D
Algorithms for Community Detection in Large Networks(And guidelines on CS3230R) Leong Hon Wai (梁汉槐) Department of Computer Science National University of Singapore leonghw@comp.nus.edu.sg http://www.comp.nus.edu.sg/~leonghw/ CS3230R Talk: 13 Feb 2014
For CS3230R • Choose CD algorithm(s) • Check availability of code • READ and understand chosen algorithm • Quick survey CLOSELY-related algorithms • Prepare implementation, test, evaluation • Prepare report • Prepare presentation
CS3230 Talks • Need Talk on Testing of CD Algorithms • Schedule • 20-Feb (Wk 6) – Disc. and Choosing Topics • 27-Feb (Break) – no talk • 06-Mar (Wk 7) – Feedback, Plan • 13-Mar (Wk 8) – Davin, WenBo • 20-Mar (Wk 9) – Yujian, Darius • 27-Mar (Wk 10) – ?? • 03-Apr (Wk 11) – ??
Large Real-World Networks • Internet graphs, WWW graphs • Citation networks, actor networks • Transportation network, Email networks • Food Web, • Social Networks (FB, Linked-In, etc) • Biochemical networks • Protein-Protein Interaction (PPI) networks
Community Structure “groups of vertices with dense intra-group connections, and sparse inter-group connections.” • Within-group (intra-group) edges. • High density • Between-group (inter-group) edges. • Low density.
Examples of Community Structures • Communities of biochemical network might correspond to “functional units” of some kind. • Communities of a web graph might correspond to sets of “web sites dealing with a related topics”.
Where is the Rabbit (Sept 2013) Typhoon Usagi (ウサギ, rabbit) (16-24 Sept 2013) http://en.wikipedia.org/wiki/Typhoon_Usagi_(2013)
Outline of Talk • Large Networks are Everywhere • Community Detection: A Quick Overview Application in Computational Biology • Protein Complex Detection • Specialized Algorithms • Performance Evaluation • Challenges and Conclusion
http://www.cscs.umich.edu/~crshalizi/notebooks/community-discovery.htmlhttp://www.cscs.umich.edu/~crshalizi/notebooks/community-discovery.html THERE ARE MANY WAYS TO SKIN A CAT….. THERE ARE EVEN MORE WAYS TO FIND COMMUNITIES IN NETWORKS….. * Recommended: Aaron Clauset, "Finding local community structure in networks", physics/0503036 = Physical Review E 72 (2005): 026132 [Clever; but then, Aaron is clever.] * Aaron Clauset, M. E. J. Newman and Cristopher Moore, "Finding Community Structure in Very Large Networks", cond-mat/0408187 = Physical Review E 70 (2004): 066111 * J.-J. Daudin, F. Picard and S. Robin, "A Mixture Model for Random Graphs", Statistics and Computing 18 (2008): 173--183 * Michelle Girvan and M. E. J. Newman, "Community structure in social and biological networks," cond-mat/0112110 = Proceedings of the National Academy of Sciences (USA) 99 (2002): 7821--7826 * Roger Guimera, Marta Sales-Pardo and Luis A. N. Amaral, "Modularity from Fluctuations in Random Graphs", cond-mat/0403660 = Physical Review E 70 (2004): 025101 * Jake M. Hofman, Chris H. Wiggins, "A Bayesian Approach to Network Modularity", arxiv:0709.3512 [For "Bayesian", read "smoothed maximum likelihood". But nonetheless: cool.] * Andrea Lancichinetti, Santo Fortunato, Janos Kertesz, "Detecting the overlapping and hierarchical community structure of complex networks", arxiv:0802.1218 [An interesting approach, but not quite as novel as they claim --- cf. Reichardt and Bornholdt --- and I'd really like to see more evidence of superior accuracy and/or robustness] * E. A. Leicht, M. E. J. Newman, "Community structure in directed networks", arxiv:0709.4500 * M. E. J. Newman o "Modularity and community structure in networks", physics/0602124 = Proceedings of the National Academy of Sciences (USA) 103 (2006): 87577--8582 o "Finding community structure in networks using the eigenvectors of matrices", Physical Review E 74 (2006): 036104 = physics/0605087 * M. E. J. Newman and Michelle Girvan o "Mixing patterns and community structure in networks", cond-mat/0210146 o "Finding and evaluating community structure in networks", Physical Review E 69 (2003): 026113 = cond-mat/0308217 * Jörg Reichardt and Stefan Bornholdt [Code is available by e-mail from Reichardt, who was very helpful to me when I needed to implement their algorithm.] o "Detecting Fuzzy Community Structures in Complex Networks with a Potts Model", Physical Review Letters 93 (2004): 218701 = cond-mat/0402349 o "Statistical Mechanics of Community Detection", cond-mat/0603718 = Physical Review E 74 (2006): 016110 o "Clustering of sparse data via network communities — a prototype study of a large online market", Journal of Statistical Mechanics: Theory and Experiment (2007): P06016 * Jörg Reichardt and Douglas R. White, "Role models for complex networks", arxiv:0708.0958 [Discussion] * M. Sales-Pardo, R. Guimera, A. Moreira, L. Amaral, "Extracting the hierarchical organization of complex systems", arxiv:0705.1679 * Modesty forbids me to recommend: CRS, Marcelo F. Camperi and Kristina Lisa Klinkner, "Discovering Functional Communities in Dynamical Networks", q-bio.NC/0609008 * To read: Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg and Eric P. Xing, "Mixed membership stochastic blockmodels", arxiv:0705.4485 * Nelson Augusto Alves, "Unveiling community structures in weighted networks", physics/0703087 * Leonardo Angelini, Stefano Boccaletti, Daniele Marinazzo, Mario Pellicoro, and Sebastiano Stramaglia, "Fast identification of network modules by optimization of ratio association", cond-mat/0610182 * L. Angelini, D. Marinazzo, M. Pellicoro and S. Stramaglia, "Natural clustering: the modularity approach", cond-mat/0607643 * A. Arenas, J. Duch, A. Fernandez, S. Gomez, "Size reduction of complex networks preserving modularity", physics/0702015 [Do you really need all those links? Wouldn't your life be simpler if you could just ignore some of them?] * Alex Arenas, Alberto Fernandez, Sergio Gomez, "Multiple resolution of the modular structure of complex networks", physics/0703218 * Alex Arenas, Alberto Fernandez, Santo Fortunato, Sergio Gomez, "Motif-based communities in complex networks", arxiv:0710.0059 * Jim Bagrow and Erik Bollt, "A Local Method for Detecting Communities", cond-mat/0412482 * James Bagrow, Erik Bollt, Luciano da F. Costa, "Network Structure Revealed by Short Cycles", cond-mat/0612502 * S. Boccaletti, M. Ivanchenko, V. Latora, A. Pluchino and A. Rapisarda, "Dynamical clustering methods to find community structures", physics/0607179 * Michael James Bommarito II, Daniel Martin Katz, Jon Zelner, "On the Stability of Community Detection Algorithms on Longitudinal Citation Data", arxiv:0908.0449 * U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski, and D. Wagner, "Maximizing Modularity is hard", physics/0608255 [i.e., maximizing Newman's Q is NP hard. I haven't read beyond the abstract yet, so I don't know if they address the question of what makes it hard in the hard cases, and whether those are properties we should expect to see in real-world networks. Conceivably, actual social networks are, on average, easy to modularize...] * Andrea Capocci, Vito D. P. Servedio, Guido Caldarelli, Francesca Colaiori, "Detecting communities in large networks", cond-mat/0402499 * Horacio Castellini and Lilia Romanelli, "Social network from communities of electronic mail", nlin.CD/0509021 * Leon Danon, Albert Díaz-Guilera, and Alex Arenas, "The effect of size heterogeneity on community identification in complex networks", Journal of Statistical Mechanics: Theory and Experiment (2006): P11010 = physics/0601144 * Leon Danon, Albert Díaz-Guilera, Jordi Duch and Alex Arenas, "Comparing community structure identification", Journal of Statistical Mechanics: Theory and Experiment (2005): P09008 = cond-mat/0505245 * Jordi Duch and Alex Arenas, "Community detection in complex networks using extremal optimization", Physical Review E 72 (2005): 027104 * Illes J. Farkas, Daniel Abel, Gergely Palla, Tamas Vicsek, "Weighted network modules", cond-mat/0703706 * Sam Field, Kenneth A. Frank, Kathryn Schiller, Catherine Riegle-Crumb and Chandra Muller, "Identifying positions from affiliation networks: Preserving the duality of people and events", Social Networks 28 (2006): 97--123 * G. W. Flake, S. R. Lawrence, C. L. Giles and F. M. Coetzee, "Self-organization and identification of Web communities", IEEE Computer 36 (2002): 66--71 * Santo Fortunato, "Community detection in graphs", arxiv:0906.0612 * Santo Fortunato and Marc Bathélemy, "Resolution limit in community detection", physics/0607100 = cite>Proceedings of the National Academy of Sciences (USA) 104 (2007): 36--41 * Santo Fortunato and Claudio Castellano, "Community Structure in Graphs", arxiv:0712.2716 [Review paper; thanks to Ed Vielmetti for the pointer] * Santo Fortunato, Vito Latora and Massimo Marchiori, "A Method to Find Community Structures Based on Information Centrality", cond-mat/0402522 * Kenneth A. Frank, "Identifying Cohesive Subgroups", Social Networks 17 (1995): 27--56 * David Gfeller, Jean-Cédric Chappelier, and Paolo De Los Rios, "Finding instabilities in the community structure of complex networks", Physical Review E 72 (2005): 056135 * Rumi Ghosh, Kristina Lerman, "Structure of Heterogeneous Networks", arxiv:0906.2212 * V. Gol'dshtein and G. A. Koganov, "An indicator for community structure", physics/0607159 * Mark S. Handcock, Adrian E. Raftery and Jeremy Tantrum, "Model-Based Clustering for Social Networks" Journal of the Royal Statistical Society A 170 (2007): 301--354 [PDF preprint] * M. B. Hastings, "Community detection as an inference problem", Physical Review E 74 (2006): 035102 = cond-mat/0604429 * Erik Holmström, Nicolas Bock and Joan Brännlund, "Density Analysis of Network Community Divisions", cond-mat/0608612 * I. Ispolatov, I. Mazo, A. Yuryev, "Finding mesoscopic communities in sparse networks", q-bio.MN/0512038 = Journal of Statistical Mechanics (2006): P09014 * Brian Karrer, Elizaveta Levina, M. E. J. Newman, "Robustness of community structure in networks", arxiv:0709.2108 * Jussi M. Kumpula, Jari Saramaki, Kimmo Kaski, and Janos Kertesz, "Resolution limit in complex network community detection with Potts model approach",cond-mat/0610370 * Andrea Lancichinetti, Santo Fortunato, "Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities", arxiv:0904.3940 * Sune Lehmann, Martin Schwartz, Lars Kai Hansen, "Bi-clique Communities", arxiv:0710.4867 * Michele Leone, Sumedha, Martin Weigt, "Clustering by soft-constraint affinity propagation: Applications to gene-expression data", arxiv:0705.2646 * Claire P. Massen, Jonathan P. K. Doye, "Thermodynamics of Community Structure", cond-mat/0610077 * Ian X.Y. Leung, Pan Hui, Pietro Lio', Jon Crowcroft, "Towards Real Time Community Detection in Large Networks", arxiv:0808.2633 * Stefanie Muff, Francesco Rao, and Amedeo Caflisch, "Local modularity measure for network clusterizations", Physical Review E 72 (2005): 056107 * Andreas Noack, "Modularity clustering is force-directed layout", arxiv:0807.4052 * Gergely Palla, Imre Derenyi, Illes Farkas and Tamas Vicsek, "Uncovering the overlapping community structure of complex networks in nature and society", Nature 435 (2005): 814--818 = physics/0506133 * Gergely Palla, Illes J. Farkas, Peter Pollner, Imre Derenyi, Tamas Vicsek, "Directed network modules", physics/0703248 * Nicolas Pissard and Houssem Assadi, "Detecting overlapping communities in linear time with P&A algorithm", physics/0509254 * Pascal Pons, "Post-Processing Hierarchical Community Structures: Quality Improvements and Multi-scale View", cs.DS/0608050 * Mason A. Porter, Jukka-Pekka Onnela, Peter J. Mucha, "Communities in Networks", arxiv:0902.3788 * Josep M. Pujol, Javier Béjar, and Jordi Delgado, "Clustering algorithm for determining community structure in large networks", Physical Review E 74 (2006): 016107 * Francisco A. Rodrigues, Gonzalo Travieso, Luciano da F. Costa, "Fast Community Identification by Hierarchical Growth", physics/0602144 * Huaijun Qiu and Edwin R. Hancock, "Graph matching and clustering using spectral partitions", Pattern Recognition 39 (2006): 22--34 [In this context, for the ideas on hierarchical decomposition, which sounds like it might work for community discovery, if in fact it's not equivalent to some existing community-discovery algorithm.] * Usha Nandini Raghavan, Reka Albert, Soundar Kumara, "Near linear time algorithm to detect community structures in large-scale networks", arxiv:0709.2938 ["every node is initialized with a unique label and at every step each node adopts the label that most of its neighbors currently have"] * Jörg Reichardt and Stefan Bornholdt, "When are networks truly modular?", cond-mat/0606220 * Jörg Reichardt and Michele Leone, "(Un)detectable cluster structure in sparse networks", arxiv:0711.1452 * Martin Rosvall and Carl T. Bergstrom o "An information-theoretic framework for resolving community structure in complex networks", physics/0612035 [Or, MDL to the rescue!] o "Maps of Information Flow Reveal Community Structure In Complex Networks" [Thanks to Martin and Carl for a preprint] * Erin N. Sawardecker, Marta Sales-Pardo, Luís A. Nunes Amaral, "Detection of node group membership in networks with group overlap", arxiv:0812.1243 * Chayant Tantipathananandh, Tanya Berger-Wolf and David Kempe, "A Framework For Community Identification in Dynamic Social Networks" [PDF] * Joshua R. Tyler, Dennis M. Wilkinson and Bernardo A. Huberman, "Email as Spectroscopy: Automated Discovery of Community Structure within Organizations," cond-mat/0303264 * I. Vragovic and E. Louis, "Network community structure and loop coefficient method", Physical Review E 74 (2006): 016105 * Huijie Yang, Wenxu Wang, Tao Zhou, Binghong ang and Fangcui Zhao, "Reconstruct the Hierarchical Structure in a Complex Network", physics/0508026 ["Based upon the eigenvector centrality (EC) measure, a method is proposed to reconstruct the hierarchical structure of a complex network. It is tested on the Santa Fe Institute collaboration network, whose structure is well known."] * Haijun Zhou o "Distance, dissimilarity index, and network community structure," physics/0302032 o "Network Landscape from a Brownian Particle's Perspective," physics/0302030 * Etay Ziv, Manuel Middendorf and Chris Wiggins, "An Information-Theoretic Approach to Network Modularity", q-bio.QM/0411033 * Jim Bagrow and Erik Bollt, "A Local Method for Detecting Communities", cond-mat/0412482 * James Bagrow, Erik Bollt, Luciano da F. Costa, "Network Structure Revealed by Short Cycles", cond-mat/0612502 * S. Boccaletti, M. Ivanchenko, V. Latora, A. Pluchino and A. Rapisarda, "Dynamical clustering methods to find community structures", physics/0607179 * Michael James Bommarito II, Daniel Martin Katz, Jon Zelner, "On the Stability of Community Detection Algorithms on Longitudinal Citation Data", arxiv:0908.0449 * U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski, and D. Wagner, "Maximizing Modularity is hard", physics/0608255 [i.e., maximizing Newman's Q is NP hard. I haven't read beyond the abstract yet, so I don't know if they address the question of what makes it hard in the hard cases, and whether those are properties we should expect to see in real-world networks. Conceivably, actual social networks are, on average, easy to modularize...] * Andrea Capocci, Vito D. P. Servedio, Guido Caldarelli, Francesca Colaiori, "Detecting communities in large networks", cond-mat/0402499 * Horacio Castellini and Lilia Romanelli, "Social network from communities of electronic mail", nlin.CD/0509021 * Leon Danon, Albert Díaz-Guilera, and Alex Arenas, "The effect of size heterogeneity on community identification in complex networks", Journal of Statistical Mechanics: Theory and Experiment (2006): P11010 = physics/0601144 * Leon Danon, Albert Díaz-Guilera, Jordi Duch and Alex Arenas, "Comparing community structure identification", Journal of Statistical Mechanics: Theory and Experiment (2005): P09008 = cond-mat/0505245 * Jordi Duch and Alex Arenas, "Community detection in complex networks using extremal optimization", Physical Review E 72 (2005): 027104 * Illes J. Farkas, Daniel Abel, Gergely Palla, Tamas Vicsek, "Weighted network modules", cond-mat/0703706 * Sam Field, Kenneth A. Frank, Kathryn Schiller, Catherine Riegle-Crumb and Chandra Muller, "Identifying positions from affiliation networks: Preserving the duality of people and events", Social Networks 28 (2006): 97--123 * G. W. Flake, S. R. Lawrence, C. L. Giles and F. M. Coetzee, "Self-organization and identification of Web communities", IEEE Computer 36 (2002): 66--71 * Santo Fortunato, "Community detection in graphs", arxiv:0906.0612 * Santo Fortunato and Marc Bathélemy, "Resolution limit in community detection", physics/0607100 = cite>Proceedings of the National Academy of Sciences (USA) 104 (2007): 36--41 * Santo Fortunato and Claudio Castellano, "Community Structure in Graphs", arxiv:0712.2716 [Review paper; thanks to Ed Vielmetti for the pointer] * Santo Fortunato, Vito Latora and Massimo Marchiori, "A Method to Find Community Structures Based on Information Centrality", cond-mat/0402522 * Kenneth A. Frank, "Identifying Cohesive Subgroups", Social Networks 17 (1995): 27--56 * David Gfeller, Jean-Cédric Chappelier, and Paolo De Los Rios, "Finding instabilities in the community structure of complex networks", Physical Review E 72 (2005): 056135 * Rumi Ghosh, Kristina Lerman, "Structure of Heterogeneous Networks", arxiv:0906.2212 * V. Gol'dshtein and G. A. Koganov, "An indicator for community structure", physics/0607159 * Mark S. Handcock, Adrian E. Raftery and Jeremy Tantrum, "Model-Based Clustering for Social Networks" Journal of the Royal Statistical Society A 170 (2007): 301--354 [PDF preprint] * M. B. Hastings, "Community detection as an inference problem", Physical Review E 74 (2006): 035102 = cond-mat/0604429 * Erik Holmström, Nicolas Bock and Joan Brännlund, "Density Analysis of Network Community Divisions", cond-mat/0608612 * I. Ispolatov, I. Mazo, A. Yuryev, "Finding mesoscopic communities in sparse networks", q-bio.MN/0512038 = Journal of Statistical Mechanics (2006): P09014 * Brian Karrer, Elizaveta Levina, M. E. J. Newman, "Robustness of community structure in networks", arxiv:0709.2108 * Jussi M. Kumpula, Jari Saramaki, Kimmo Kaski, and Janos Kertesz, "Resolution limit in complex network community detection with Potts model approach",cond-mat/0610370 * Andrea Lancichinetti, Santo Fortunato, "Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities", arxiv:0904.3940 * Sune Lehmann, Martin Schwartz, Lars Kai Hansen, "Bi-clique Communities", arxiv:0710.4867 * Michele Leone, Sumedha, Martin Weigt, "Clustering by soft-constraint affinity propagation: Applications to gene-expression data", arxiv:0705.2646 * Claire P. Massen, Jonathan P. K. Doye, "Thermodynamics of Community Structure", cond-mat/0610077 * Ian X.Y. Leung, Pan Hui, Pietro Lio', Jon Crowcroft, "Towards Real Time Community Detection in Large Networks", arxiv:0808.2633 * Stefanie Muff, Francesco Rao, and Amedeo Caflisch, "Local modularity measure for network clusterizations", Physical Review E 72 (2005): 056107 * Andreas Noack, "Modularity clustering is force-directed layout", arxiv:0807.4052 * Gergely Palla, Imre Derenyi, Illes Farkas and Tamas Vicsek, "Uncovering the overlapping community structure of complex networks in nature and society", Nature 435 (2005): 814--818 = physics/0506133 * Gergely Palla, Illes J. Farkas, Peter Pollner, Imre Derenyi, Tamas Vicsek, "Directed network modules", physics/0703248 * Nicolas Pissard and Houssem Assadi, "Detecting overlapping communities in linear time with P&A algorithm", physics/0509254 * Pascal Pons, "Post-Processing Hierarchical Community Structures: Quality Improvements and Multi-scale View", cs.DS/0608050 * Mason A. Porter, Jukka-Pekka Onnela, Peter J. Mucha, "Communities in Networks", arxiv:0902.3788 * Josep M. Pujol, Javier Béjar, and Jordi Delgado, "Clustering algorithm for determining community structure in large networks", Physical Review E 74 (2006): 016107 * Francisco A. Rodrigues, Gonzalo Travieso, Luciano da F. Costa, "Fast Community Identification by Hierarchical Growth", physics/0602144 * Huaijun Qiu and Edwin R. Hancock, "Graph matching and clustering using spectral partitions", Pattern Recognition 39 (2006): 22--34 [In this context, for the ideas on hierarchical decomposition, which sounds like it might work for community discovery, if in fact it's not equivalent to some existing community-discovery algorithm.] * Usha Nandini Raghavan, Reka Albert, Soundar Kumara, "Near linear time algorithm to detect community structures in large-scale networks", arxiv:0709.2938 ["every node is initialized with a unique label and at every step each node adopts the label that most of its neighbors currently have"] * Jörg Reichardt and Stefan Bornholdt, "When are networks truly modular?", cond-mat/0606220 * Jörg Reichardt and Michele Leone, "(Un)detectable cluster structure in sparse networks", arxiv:0711.1452 * Martin Rosvall and Carl T. Bergstrom o "An information-theoretic framework for resolving community structure in complex networks", physics/0612035 [Or, MDL to the rescue!] o "Maps of Information Flow Reveal Community Structure In Complex Networks" [Thanks to Martin and Carl for a preprint] * Erin N. Sawardecker, Marta Sales-Pardo, Luís A. Nunes Amaral, "Detection of node group membership in networks with group overlap", arxiv:0812.1243 * Chayant Tantipathananandh, Tanya Berger-Wolf and David Kempe, "A Framework For Community Identification in Dynamic Social Networks" [PDF] * Joshua R. Tyler, Dennis M. Wilkinson and Bernardo A. Huberman, "Email as Spectroscopy: Automated Discovery of Community Structure within Organizations," cond-mat/0303264 * I. Vragovic and E. Louis, "Network community structure and loop coefficient method", Physical Review E 74 (2006): 016105 * Huijie Yang, Wenxu Wang, Tao Zhou, Binghong ang and Fangcui Zhao, "Reconstruct the Hierarchical Structure in a Complex Network", physics/0508026 ["Based upon the eigenvector centrality (EC) measure, a method is proposed to reconstruct the hierarchical structure of a complex network. It is tested on the Santa Fe Institute collaboration network, whose structure is well known."] * Haijun Zhou o "Distance, dissimilarity index, and network community structure," physics/0302032 o "Network Landscape from a Brownian Particle's Perspective," physics/0302030 * Etay Ziv, Manuel Middendorf and Chris Wiggins, "An Information-Theoretic Approach to Network Modularity", q-bio.QM/0411033
* Erik Holmström, Nicolas Bock and Joan Brännlund, "Density Analysis of Network Community Divisions", cond-mat/0608612 * I. Ispolatov, I. Mazo, A. Yuryev, "Finding mesoscopic communities in sparse networks", q-bio.MN/0512038 = Journal of Statistical Mechanics (2006): P09014 * Brian Karrer, Elizaveta Levina, M. E. J. Newman, "Robustness of community structure in networks", arxiv:0709.2108 * Jussi M. Kumpula, Jari Saramaki, Kimmo Kaski, and Janos Kertesz, "Resolution limit in complex network community detection with Potts model approach",cond-mat/0610370 * Andrea Lancichinetti, Santo Fortunato, "Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities", arxiv:0904.3940 * Sune Lehmann, Martin Schwartz, Lars Kai Hansen, "Bi-clique Communities", arxiv:0710.4867 * Michele Leone, Sumedha, Martin Weigt, "Clustering by soft-constraint affinity propagation: Applications to gene-expression data", arxiv:0705.2646 * Claire P. Massen, Jonathan P. K. Doye, "Thermodynamics of Community Structure", cond-mat/0610077 * Ian X.Y. Leung, Pan Hui, Pietro Lio', Jon Crowcroft, "Towards Real Time Community Detection in Large Networks", arxiv:0808.2633 * Stefanie Muff, Francesco Rao, and Amedeo Caflisch, "Local modularity measure for network clusterizations", Physical Review E 72 (2005): 056107 * Andreas Noack, "Modularity clustering is force-directed layout", arxiv:0807.4052 * Gergely Palla, Imre Derenyi, Illes Farkas and Tamas Vicsek, "Uncovering the overlapping community structure of complex networks in nature and society", Nature 435 (2005): 814--818 = physics/0506133 * Gergely Palla, Illes J. Farkas, Peter Pollner, Imre Derenyi, Tamas Vicsek, "Directed network modules", physics/0703248 * Nicolas Pissard and Houssem Assadi, "Detecting overlapping communities in linear time with P&A algorithm", physics/0509254 * Pascal Pons, "Post-Processing Hierarchical Community Structures: Quality Improvements and Multi-scale View", cs.DS/0608050 * Mason A. Porter, Jukka-Pekka Onnela, Peter J. Mucha, "Communities in Networks", arxiv:0902.3788 * Josep M. Pujol, Javier Béjar, and Jordi Delgado, "Clustering algorithm for determining community structure in large networks", Physical Review E 74 (2006): 016107 * Francisco A. Rodrigues, Gonzalo Travieso, Luciano da F. Costa, "Fast Community Identification by Hierarchical Growth", physics/0602144 * Huaijun Qiu and Edwin R. Hancock, "Graph matching and clustering using spectral partitions", Pattern Recognition 39 (2006): 22--34 [In this context, for the ideas on hierarchical decomposition, which sounds like it might work for community discovery, if in fact it's not equivalent to some existing community-discovery algorithm.] * Usha Nandini Raghavan, Reka Albert, Soundar Kumara, "Near linear time algorithm to detect community structures in large-scale networks", arxiv:0709.2938 ["every node is initialized with a unique label and at every step each node adopts the label that most of its neighbors currently have"] * Jörg Reichardt and Stefan Bornholdt, "When are networks truly modular?", cond-mat/0606220 * Jörg Reichardt and Michele Leone, "(Un)detectable cluster structure in sparse networks", arxiv:0711.1452 * Martin Rosvall and Carl T. Bergstrom o "An information-theoretic framework for resolving community structure in complex networks", physics/0612035 [Or, MDL to the rescue!] o "Maps of Information Flow Reveal Community Structure In Complex Networks" [Thanks to Martin and Carl for a preprint] * Erin N. Sawardecker, Marta Sales-Pardo, Luís A. Nunes Amaral, "Detection of node group membership in networks with group overlap", arxiv:0812.1243 * Chayant Tantipathananandh, Tanya Berger-Wolf and David Kempe, "A Framework For Community Identification in Dynamic Social Networks" [PDF] * Joshua R. Tyler, Dennis M. Wilkinson and Bernardo A. Huberman, "Email as Spectroscopy: Automated Discovery of Community Structure within Organizations," cond-mat/0303264 * I. Vragovic and E. Louis, "Network community structure and loop coefficient method", Physical Review E 74 (2006): 016105 * Huijie Yang, Wenxu Wang, Tao Zhou, Binghong ang and Fangcui Zhao, "Reconstruct the Hierarchical Structure in a Complex Network", physics/0508026 ["Based upon the eigenvector centrality (EC) measure, a method is proposed to reconstruct the hierarchical structure of a complex network. It is tested on the Santa Fe Institute collaboration network, whose structure is well known."] * Haijun Zhou o "Distance, dissimilarity index, and network community structure," physics/0302032 o "Network Landscape from a Brownian Particle's Perspective," physics/0302030 * Etay Ziv, Manuel Middendorf and Chris Wiggins, "An Information-Theoretic Approach to Network Modularity", q-bio.QM/0411033
Outline of Talk • Large Networks are Everywhere • Community Detection: A Quick Overview Application in Computational Biology • Protein Complex Detection • Specialized Algorithms • Performance Evaluation • Challenges and Conclusion
Adjacency Matrix Goal is to minimize R
Families of Community FindingMethods / Algorithms 1 DIVISIVE METHODS
When do you stop cutting? Modularity Newman, Girvan (2004) eij is equal to the number of links between community i and community j.
It is important to recalculate Newman, Girvan (2004)
Families of Community FindingMethods / Algorithms 2 CLIQUE Percolation METHODS
Wanna use Clique Percolation Method? Just google: “cfinder”
Families of Community FindingMethods / Algorithms 3 LINK CLUSTERING METHODS
COMMUNITY: “a group of densely interconnected nodes” Topologically Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, "Communities and Hierarchical Organization of Links in Complex Networks", submitted, arxiv:0903.3178. Similar LINKS
COMMUNITY: “a group of TOPOLOGICALLY SIMILAR LINKS” Topologically Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, "Communities and Hierarchical Organization of Links in Complex Networks", submitted, arxiv:0903.3178. Similar LINKS
Colleagues Family Friends Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, "Communities and Hierarchical Organization of Links in Complex Networks", submitted, arxiv:0903.3178.
‘Family’ links Colleagues Family Friends Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, "Communities and Hierarchical Organization of Links in Complex Networks", submitted, arxiv:0903.3178.
‘Family’ links ‘Friends’ links Colleagues Friends Family Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, "Communities and Hierarchical Organization of Links in Complex Networks", submitted, arxiv:0903.3178.
‘Nerds & geeks’ links ‘Family’ links ‘Friends’ links Colleagues Friends Family Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, "Communities and Hierarchical Organization of Links in Complex Networks", submitted, arxiv:0903.3178.
Node: multiple membership Links: (almost) unique membership
Thank you. Q& A Contact: Hon Wai Leong(梁汉槐) FB, email: leonghw@comp.nus.edu.sg http://www.comp.nus.edu.sg/~leonghw/